Power system restoration has attracted more attention and made great progress recently. Research progress of the power system restoration from 2006 to 2016 is reviewed in this paper, including black-start, network rec...Power system restoration has attracted more attention and made great progress recently. Research progress of the power system restoration from 2006 to 2016 is reviewed in this paper, including black-start, network reconfiguration and load restoration. Some emerging methods and key techniques are also discussed in the context of the integration of variable renewable energy and development of the smart grid. There is a long way to go to achieve automatic self-healing in bulk power systems because of its extreme complexity. However, rapidly developing artificial intelligence technology will eventually enable the step-by-step dynamic decision-making based on the situation awareness of supervisory control and data acquisition systems(SCADA) and wide area measurement systems(WAMS) in the near future.展开更多
现有电力系统稳定器(power system stabilizer,PSS)和直流调制多使用本地信号作为控制器反馈输入信号,控制器间的交互作用可能降低甚至破坏系统稳定性。提出了一种基于广域测量信号的PSS与直流调制协调策略,首先通过留数法选择对于振荡...现有电力系统稳定器(power system stabilizer,PSS)和直流调制多使用本地信号作为控制器反馈输入信号,控制器间的交互作用可能降低甚至破坏系统稳定性。提出了一种基于广域测量信号的PSS与直流调制协调策略,首先通过留数法选择对于振荡模态可观性较强的广域信号作为阻尼控制器备选反馈信号;其次通过相对增益方法选择使PSS和直流调制交互影响最小的备选信号作为最佳反馈信号;而后设计分散控制器,并运用基于混沌和差分进化的混合粒子群优化算法对PSS和直流调制控制器参数进行协调优化。最后,通过EPRI 36节点系统仿真验证了协调策略的正确性和有效性。展开更多
The present-day power system is a complex network that caters to the demands of several applications with diverse energy requirements.Such a complex network is susceptible to faults caused due to several reasons such ...The present-day power system is a complex network that caters to the demands of several applications with diverse energy requirements.Such a complex network is susceptible to faults caused due to several reasons such as the failure of the equipment,hostile weather conditions,etc.These faults if not detected in the real-time may lead to cascading failures resulting in a blackout.These blackouts have catastrophic consequences which result in a huge loss of resources.For example,a blackout in 2004 caused an economic loss of 10 billion U.S dollars as per the report of the Electricity Consumers Resource Council.Subsequent investigation of the blackout revealed that the catastrophe could have been prevented if there was an early warning system.Similar other blackouts across the globe forced the power system engineers to devise an effective solution for real-time monitoring and control of the power system.The consequence of these efforts is the wide area measurement system(WAMS).The WAMS consists of several sensors known as the phasor measurement units(PMUs)that collect the real information pertaining to the health of the power grid.This information in the form time synchronized voltage and current phasors is communicated to the central control center or the phasor data concentrator(PDC)where the data is analyzed for detection of power system anomalies.The communication of the synchrophasor data from each PMU to the PDC constitutes the synchrophasor communication system(SPCS).Thus,the SPCS can be considered as the edifice of the WAMS and its reliable operation is essential for the effective monitoring and control of the power system.This paper presents a comprehensive review of the various synchrophasor communication technologies,communication standards and applications.It also identifies the existing knowledge gaps and the scope for future research work.展开更多
A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign ...A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign the distributed local power system stabilizer (LPSS) and high-voltage direct current (HVDC) wide-area stabilizing controller (HVDC-WASC) to the concerned damping modes.The global optimization is used to simultaneously optimize all the overall control gains of LPSSs and HVDCWASC.Moreover,the optimization model,which has an adaptive ability of searching and updating dominant oscillation modes,is established.Both the linear analysis and nonlinear simulation results verify the effectiveness of the proposed design method in enhancing the stability of large-scale power systems.展开更多
This paper presents a novel composite wide area control of a DFIG wind energy system which combines the Robust Exact Differentiator(RED)and Discontinuous Integral(DI)control to damp out inter-area oscillations.RED gen...This paper presents a novel composite wide area control of a DFIG wind energy system which combines the Robust Exact Differentiator(RED)and Discontinuous Integral(DI)control to damp out inter-area oscillations.RED generates the real-time differentiation of a relative speed signal in a noisy environment while DI control,an extension to a twisting algorithm and PID control,develops a continuous control signal and hence reduces chattering.The proposed control is robust to disturbances and can enhance the overall stability of the system.The proposed composite sliding mode control is evaluated using a modified benchmark two-area power system model with wind energy integration.Simulation results under various operating scenarios show the efficacy of the proposed approach.展开更多
From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication ...From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.展开更多
Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection...Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.展开更多
A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems...A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems(WAMS) in emergency control of power systems are increasing. Therefore, a new WAMS-based controlled islanding scheme for interconnected power systems is proposed. First, four similarity indexes associated with the trajectories of generators are defined, and the weights of these four indexes are determined by using the well-developed entropy theory. Then, a coherency identification algorithm based on hierarchical clustering is presented to determine the coherent groups of generators.Secondly, an optimization model for determining controlled islanding schemes based on the coherent groups of generators is developed to seek the optimal cutset. Finally, a 16-generator68-bus power system and a reduced WECC 29-unit 179-bus power system are employed to demonstrate the proposed WAMS-based controlled islanding schemes, and comparisons with existing slow coherency based controlled islanding strategies are also carried out.展开更多
Wide-area monitoring systems(WAMS)are becoming increasingly vital for enhancing power grid operators’situational awareness capabilities.As a pilot WAMS that was initially deployed in 2003,the frequency monitoring net...Wide-area monitoring systems(WAMS)are becoming increasingly vital for enhancing power grid operators’situational awareness capabilities.As a pilot WAMS that was initially deployed in 2003,the frequency monitoring network FNET/GridEye uses GPS-time-synchronized monitors called frequency disturbance recorders(FDRs)to capture dynamic grid behaviors.Over the past ten years,a large number of publications related to FNET/GridEye have been reported.In this paper,the most recent developments of FNET/GridEye sensors,data centers,and data analytics applications are reviewed.These works demonstrate that FNET/GridEye will become a costeffective situational awareness tool for the future smart grid.展开更多
AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.MET...AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.展开更多
The comprehensive reform of“three-wide education”is important to achieve inheritance and innovation in ideological education in colleges and universities.The Guangdong University of Petrochemical Technology aims to ...The comprehensive reform of“three-wide education”is important to achieve inheritance and innovation in ideological education in colleges and universities.The Guangdong University of Petrochemical Technology aims to address the practical problems of a weak ideological education team,incomplete system and mechanism,and insufficient resource mobilization in“three-wide education.”It actively explores the“three-wide education”based on the university’s existing foundation and advantages.Comprehensive,innovative ideas for reform,practice,and promotion of unique practices and paths are necessary,to continuously deepen education reforms and strive to build a new“three-wide education”work pattern to help the country’s modern talent cultivation work.展开更多
基金supported by National Basic Research Program of China(973 Program)(No.2012CB215101)
文摘Power system restoration has attracted more attention and made great progress recently. Research progress of the power system restoration from 2006 to 2016 is reviewed in this paper, including black-start, network reconfiguration and load restoration. Some emerging methods and key techniques are also discussed in the context of the integration of variable renewable energy and development of the smart grid. There is a long way to go to achieve automatic self-healing in bulk power systems because of its extreme complexity. However, rapidly developing artificial intelligence technology will eventually enable the step-by-step dynamic decision-making based on the situation awareness of supervisory control and data acquisition systems(SCADA) and wide area measurement systems(WAMS) in the near future.
文摘现有电力系统稳定器(power system stabilizer,PSS)和直流调制多使用本地信号作为控制器反馈输入信号,控制器间的交互作用可能降低甚至破坏系统稳定性。提出了一种基于广域测量信号的PSS与直流调制协调策略,首先通过留数法选择对于振荡模态可观性较强的广域信号作为阻尼控制器备选反馈信号;其次通过相对增益方法选择使PSS和直流调制交互影响最小的备选信号作为最佳反馈信号;而后设计分散控制器,并运用基于混沌和差分进化的混合粒子群优化算法对PSS和直流调制控制器参数进行协调优化。最后,通过EPRI 36节点系统仿真验证了协调策略的正确性和有效性。
文摘The present-day power system is a complex network that caters to the demands of several applications with diverse energy requirements.Such a complex network is susceptible to faults caused due to several reasons such as the failure of the equipment,hostile weather conditions,etc.These faults if not detected in the real-time may lead to cascading failures resulting in a blackout.These blackouts have catastrophic consequences which result in a huge loss of resources.For example,a blackout in 2004 caused an economic loss of 10 billion U.S dollars as per the report of the Electricity Consumers Resource Council.Subsequent investigation of the blackout revealed that the catastrophe could have been prevented if there was an early warning system.Similar other blackouts across the globe forced the power system engineers to devise an effective solution for real-time monitoring and control of the power system.The consequence of these efforts is the wide area measurement system(WAMS).The WAMS consists of several sensors known as the phasor measurement units(PMUs)that collect the real information pertaining to the health of the power grid.This information in the form time synchronized voltage and current phasors is communicated to the central control center or the phasor data concentrator(PDC)where the data is analyzed for detection of power system anomalies.The communication of the synchrophasor data from each PMU to the PDC constitutes the synchrophasor communication system(SPCS).Thus,the SPCS can be considered as the edifice of the WAMS and its reliable operation is essential for the effective monitoring and control of the power system.This paper presents a comprehensive review of the various synchrophasor communication technologies,communication standards and applications.It also identifies the existing knowledge gaps and the scope for future research work.
基金supported by the National Natural Science Foundation of China(NSFC)(No.51377001,No.61233008,No.61304092,)the International Science and Technology Cooperation Program of China(No.2015DFR70850)+1 种基金the State Grid Science and Technology Project of China(No.5216A014007V)the Science and Technology Project of Hunan Power Company of China(No.5216A213509X)
文摘A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign the distributed local power system stabilizer (LPSS) and high-voltage direct current (HVDC) wide-area stabilizing controller (HVDC-WASC) to the concerned damping modes.The global optimization is used to simultaneously optimize all the overall control gains of LPSSs and HVDCWASC.Moreover,the optimization model,which has an adaptive ability of searching and updating dominant oscillation modes,is established.Both the linear analysis and nonlinear simulation results verify the effectiveness of the proposed design method in enhancing the stability of large-scale power systems.
文摘This paper presents a novel composite wide area control of a DFIG wind energy system which combines the Robust Exact Differentiator(RED)and Discontinuous Integral(DI)control to damp out inter-area oscillations.RED generates the real-time differentiation of a relative speed signal in a noisy environment while DI control,an extension to a twisting algorithm and PID control,develops a continuous control signal and hence reduces chattering.The proposed control is robust to disturbances and can enhance the overall stability of the system.The proposed composite sliding mode control is evaluated using a modified benchmark two-area power system model with wind energy integration.Simulation results under various operating scenarios show the efficacy of the proposed approach.
基金Project OC4501 supported by the Scientific Research Fund of China University of Mining & Technology
文摘From an analysis of the status of coal mine underground wireless communication, the application of UWB wireless communication system to underground coal mine is proposed. The basic composition of an UWB communication system and application in underground coal mines are introduced. The analyses show that, because of the transmission power being non-limitted in underground coal mines, the use of UWB in coal mines cannot only realize wireless access services of short distance high rate application for transmission of video monitoring signals, but also realize wireless access services of long distance low rate applications for mobile telephones in underground coal mines and parameters of working conditions monitoring, etc. It is emphasized on the simulation of a TH-PPM UWB communication system with traditional underground broadband model and ground CM1, CM3 model. It is shown that the traditional underground broadband model and ground CM1, CM3 models are not applicable to the UWB communication system in underground coal mines. It is necessary to conduct research on the propagation characteristics of UWB in coal mine tunnels, given the characteristics of the underground environment and to find the appropriate UWB model for underground coal mines.
基金supported by the Foundation of Youth Innovation Promotion Association,Chinese Academy of Sciences(No.20150192)
文摘Detecting and tracking multiple targets simultaneously for space-based surveillance requires multiple cameras,which leads to a large system volume and weight. To address this problem, we propose a wide-field detection and tracking system using the segmented planar imaging detector for electro-optical reconnaissance. This study realizes two operating modes by changing the working paired lenslets and corresponding waveguide arrays: a detection mode and a tracking mode. A model system was simulated and evaluated using the peak signal-to-noise ratio method. The simulation results indicate that the detection and tracking system can realize wide-field detection and narrow-field, multi-target, high-resolution tracking without moving parts.
基金jointly supported by the National Key Research Program of China(No.2016YFB0900105)National Natural Science Foundation of China(No.51377005)Specialized Research Fund for the Doctoral Program of Higher Education(No.20120101110112)
文摘A reasonable islanding strategy of a power system is the final resort for preventing a cascading failure and/or a large-area blackout from occurrence. In recent years, the applications of wide area measurement systems(WAMS) in emergency control of power systems are increasing. Therefore, a new WAMS-based controlled islanding scheme for interconnected power systems is proposed. First, four similarity indexes associated with the trajectories of generators are defined, and the weights of these four indexes are determined by using the well-developed entropy theory. Then, a coherency identification algorithm based on hierarchical clustering is presented to determine the coherent groups of generators.Secondly, an optimization model for determining controlled islanding schemes based on the coherent groups of generators is developed to seek the optimal cutset. Finally, a 16-generator68-bus power system and a reduced WECC 29-unit 179-bus power system are employed to demonstrate the proposed WAMS-based controlled islanding schemes, and comparisons with existing slow coherency based controlled islanding strategies are also carried out.
基金the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC1041877 and the CURENT Industry Partnership Program.
文摘Wide-area monitoring systems(WAMS)are becoming increasingly vital for enhancing power grid operators’situational awareness capabilities.As a pilot WAMS that was initially deployed in 2003,the frequency monitoring network FNET/GridEye uses GPS-time-synchronized monitors called frequency disturbance recorders(FDRs)to capture dynamic grid behaviors.Over the past ten years,a large number of publications related to FNET/GridEye have been reported.In this paper,the most recent developments of FNET/GridEye sensors,data centers,and data analytics applications are reviewed.These works demonstrate that FNET/GridEye will become a costeffective situational awareness tool for the future smart grid.
基金Supported by National Natural Science Foundation of China(No.81700884)Scientific Research Foundation of National Health and Health Commission(No.WKJ-ZJ-2037)+1 种基金Zhejiang Public Welfare Technology Application Project(No.LGF21H120005)Science and Technology Project of Wenzhou(No.Y20190649).
文摘AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.
基金2020 Guangdong Province Higher Education Teaching Reform Project(Guangdong Education Gaohan[2020]No.20)。
文摘The comprehensive reform of“three-wide education”is important to achieve inheritance and innovation in ideological education in colleges and universities.The Guangdong University of Petrochemical Technology aims to address the practical problems of a weak ideological education team,incomplete system and mechanism,and insufficient resource mobilization in“three-wide education.”It actively explores the“three-wide education”based on the university’s existing foundation and advantages.Comprehensive,innovative ideas for reform,practice,and promotion of unique practices and paths are necessary,to continuously deepen education reforms and strive to build a new“three-wide education”work pattern to help the country’s modern talent cultivation work.