通过等离子喷涂技术在4Cr5Mo Si V1钢基体表面成功制备了WC10Co4Cr涂层。通过扫描电镜(SEM)、X射线衍射仪(XRD)等手段分析了涂层微观形貌和化学成分,并测试了涂层的摩擦磨损特性。结果表明:涂层主要由WC颗粒形成的骨架结构组成,同时含...通过等离子喷涂技术在4Cr5Mo Si V1钢基体表面成功制备了WC10Co4Cr涂层。通过扫描电镜(SEM)、X射线衍射仪(XRD)等手段分析了涂层微观形貌和化学成分,并测试了涂层的摩擦磨损特性。结果表明:涂层主要由WC颗粒形成的骨架结构组成,同时含有少量W、Co、Cr颗粒和W_2C相。涂层中元素分布较为均匀,无明显的聚集。涂层中和基体之间结合紧密,达到了冶金结合。磨损机制以磨粒磨损为主,同时伴有粘着磨损。WC10Co4Cr涂层经过摩擦-磨损实验后,涂层几乎没有磨损,能够有效减小磨损,提高模具使用寿命。展开更多
WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spr...WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spraying technique. Therefore, this study is aimed to evaluate and determine the effect of the deposition parameters on the properties and microstructural characteristics of WC-Co-Cr coatings using a more economical thermal spray technique. In particular, the influence of flame spray parameters on the microstructure, crystal structure, hardness, and sliding wear resistance of WC- Co-Cr coatings was examined. Two parameters were considered: Type of flame (reducing, neutral and oxidizing), and the spray torch nozzle exit area. Results indicated that WC particles undergo considerable degree of decarburization and dissolution during spraying, showing substantial amounts of W2C, W, and Co3W3C, for all the considered conditions. However, the extent of phase transformation depended largely on the flame chemistry. The microstructure of the coatings was mainly affected by the spray nozzle. Regarding the sliding wear behavior, the coatings with uniform distribution of hard particles provided the best wear resistance. The decomposition of WC into W2C phase seems to have meaningless significance in the mass loss, nevertheless, the WC phase transformation to metallic tungsten and η-phase (Co3W3C) produce higher wear rates due to deficiency of carbide particles and embrittlement of the binder phase which induces cracking and delamination of the splats.展开更多
文摘通过等离子喷涂技术在4Cr5Mo Si V1钢基体表面成功制备了WC10Co4Cr涂层。通过扫描电镜(SEM)、X射线衍射仪(XRD)等手段分析了涂层微观形貌和化学成分,并测试了涂层的摩擦磨损特性。结果表明:涂层主要由WC颗粒形成的骨架结构组成,同时含有少量W、Co、Cr颗粒和W_2C相。涂层中元素分布较为均匀,无明显的聚集。涂层中和基体之间结合紧密,达到了冶金结合。磨损机制以磨粒磨损为主,同时伴有粘着磨损。WC10Co4Cr涂层经过摩擦-磨损实验后,涂层几乎没有磨损,能够有效减小磨损,提高模具使用寿命。
文摘WC-Co-Cr coatings are widely employed due to their improved wear resistance and mechanical properties, however, the properties and performance of these coatings are compromised by the processing parameters of each spraying technique. Therefore, this study is aimed to evaluate and determine the effect of the deposition parameters on the properties and microstructural characteristics of WC-Co-Cr coatings using a more economical thermal spray technique. In particular, the influence of flame spray parameters on the microstructure, crystal structure, hardness, and sliding wear resistance of WC- Co-Cr coatings was examined. Two parameters were considered: Type of flame (reducing, neutral and oxidizing), and the spray torch nozzle exit area. Results indicated that WC particles undergo considerable degree of decarburization and dissolution during spraying, showing substantial amounts of W2C, W, and Co3W3C, for all the considered conditions. However, the extent of phase transformation depended largely on the flame chemistry. The microstructure of the coatings was mainly affected by the spray nozzle. Regarding the sliding wear behavior, the coatings with uniform distribution of hard particles provided the best wear resistance. The decomposition of WC into W2C phase seems to have meaningless significance in the mass loss, nevertheless, the WC phase transformation to metallic tungsten and η-phase (Co3W3C) produce higher wear rates due to deficiency of carbide particles and embrittlement of the binder phase which induces cracking and delamination of the splats.