This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordin...This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordinates were used. Any action that leads to an inability on the part of a structure to function as intended is known as failure. This research, therefore, investigates stresses developed in a shop built carbon steel spherical storage vessels using finite element approach as the analytical tool. 3-D finite element modeling using 3-node shallow triangular element with five degrees of freedom at each node is employed. These five degrees of freedom are the essential nodal degrees of freedom without the sixth in-plane rotation. The resulting equations from finite element analysis are coded using FORTRAN 90 computer programme. Spherical storage vessels are subjected to various internal loading pressures while nodal displacements, strains and the corresponding maximum Von-mises stresses are determined. The calculated maximum Vonmises stresses are compared with the yield strength of the shell plate material. Using specified safety factor, safety internal pressures with the corresponding shell thicknesses for shop built spherical pressure vessels are determined. The finite element modeling carried out in this research can be used to predict in-service stresses, strains, and deformations of shop built spherical pressure vessels using Von-mises yield stress as the failure criteria. The results obtained were validated by analytical method and it showed there was no significant difference (P > 0.05) with values obtained through analytical method.展开更多
Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 u...Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 using analytical equations. Petrol tankers are not circular but elliptical probably for stability during transportation. This paper has used the finite element method to investigate in-plane displacements and Von-Mises stresses in both circular and elliptical cylindrical tanks under full loading. An elliptical OANDO? tanker of 66.78 m3volume and shell thickness of0.2 mmand an equivalent volume circular cylindrical tank was used for the simulation. MATLAB? was used to generate geometrical mesh model of the petroleum tankers, extract element coordinates and conduct the finite element analysis. Plane strain condition was used in analyzing a section of the petroleum tanker. It was observed that an equivalent volume circular cylindrical tank was under a higher internal pressure (16,858 N/m2) compared to the elliptical cylinder (14,480 N/m2). Von-Mises stress and in-plane displacements showed direct linear relationships with internal fluid pressure. Von-Mises stress in the elliptical tank was found to be lower (5.7 × 106 N/m2) than for the circular tank (8 × 106 N/m2). In plane displacements was zero in the longitudinal direction for both tanks and of the order of 10-4 mm in the y-direction for both tanks with the circular larger by about 2.5 × 10-3 cm. So in addition to tank stability on the lorry, the Von-Mises stresses were lower as well for the elliptical tank. It was also observed that Von-Mises stresses were far below the yield stress of the steel plate. However, the effect of weldment area on lowering of yield stress was not studied. Stress values were validated using analytical method and found to be insignificantly different (P > 0.05).展开更多
In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been i...In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been investigated before.Thus,a finite element(FE)model was presented to calculate the stress distribution in a sleeve and strip coil when 1-3mm-thick stainless steel was wound around the sleeve.The FE model was developed by extending aprevious model by adding a sleeve between the mandrel and strip,and by modifying the boundary and interaction conditions.The strip winding process was divided into an initial process and a steady-state process.During the initial process,the minimum and maximum pressure required on the belt wrapper to maintain coil shape by self-friction of the strip was calculated by the FE model when the belt wrapper is ejected at the end of the initial process.After the initial process,an analytical model of the steady-state process was established to calculate the stress distribution and was compared with the FE model to validate it.The suggested analytical model took 11 sto give the same stress distribution that the FE model took 30 dto produce.展开更多
The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostati...The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.展开更多
以国内某300MWe级核电站冷却剂泵为对象,从安全性出发,利用流固耦合技术,通过求解流体和固体耦合方程,对稳定工况下的叶片应力进行计算和分析。理论分析表明,主泵动静叶片的应力主要包括离心力引起的拉应力、流场压力引起的弯、扭应力...以国内某300MWe级核电站冷却剂泵为对象,从安全性出发,利用流固耦合技术,通过求解流体和固体耦合方程,对稳定工况下的叶片应力进行计算和分析。理论分析表明,主泵动静叶片的应力主要包括离心力引起的拉应力、流场压力引起的弯、扭应力和温度场产生的热应力;通过对计算结果进行分析,得到结论:最大米塞斯等效应力发生在固支约束处,叶片应力不具有严格的周期性,导叶体段复杂的内部流场是其应力分布无规律性的内在原因;综合对比计算和理论分析结果,证明动静叶片应力的差异性,并简要分析上述差异的主要影响因素。由第四强度理论进行的校核结果证明:主泵满足美国机械工程师协会(American Society of Mechanical Engineers,ASME)的强度要求。为改进叶片翼型设计、保障主泵水力性能和强度要求提供有效依据。展开更多
文摘This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordinates were used. Any action that leads to an inability on the part of a structure to function as intended is known as failure. This research, therefore, investigates stresses developed in a shop built carbon steel spherical storage vessels using finite element approach as the analytical tool. 3-D finite element modeling using 3-node shallow triangular element with five degrees of freedom at each node is employed. These five degrees of freedom are the essential nodal degrees of freedom without the sixth in-plane rotation. The resulting equations from finite element analysis are coded using FORTRAN 90 computer programme. Spherical storage vessels are subjected to various internal loading pressures while nodal displacements, strains and the corresponding maximum Von-mises stresses are determined. The calculated maximum Vonmises stresses are compared with the yield strength of the shell plate material. Using specified safety factor, safety internal pressures with the corresponding shell thicknesses for shop built spherical pressure vessels are determined. The finite element modeling carried out in this research can be used to predict in-service stresses, strains, and deformations of shop built spherical pressure vessels using Von-mises yield stress as the failure criteria. The results obtained were validated by analytical method and it showed there was no significant difference (P > 0.05) with values obtained through analytical method.
文摘Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 using analytical equations. Petrol tankers are not circular but elliptical probably for stability during transportation. This paper has used the finite element method to investigate in-plane displacements and Von-Mises stresses in both circular and elliptical cylindrical tanks under full loading. An elliptical OANDO? tanker of 66.78 m3volume and shell thickness of0.2 mmand an equivalent volume circular cylindrical tank was used for the simulation. MATLAB? was used to generate geometrical mesh model of the petroleum tankers, extract element coordinates and conduct the finite element analysis. Plane strain condition was used in analyzing a section of the petroleum tanker. It was observed that an equivalent volume circular cylindrical tank was under a higher internal pressure (16,858 N/m2) compared to the elliptical cylinder (14,480 N/m2). Von-Mises stress and in-plane displacements showed direct linear relationships with internal fluid pressure. Von-Mises stress in the elliptical tank was found to be lower (5.7 × 106 N/m2) than for the circular tank (8 × 106 N/m2). In plane displacements was zero in the longitudinal direction for both tanks and of the order of 10-4 mm in the y-direction for both tanks with the circular larger by about 2.5 × 10-3 cm. So in addition to tank stability on the lorry, the Von-Mises stresses were lower as well for the elliptical tank. It was also observed that Von-Mises stresses were far below the yield stress of the steel plate. However, the effect of weldment area on lowering of yield stress was not studied. Stress values were validated using analytical method and found to be insignificantly different (P > 0.05).
基金supported by the POSCO Research Project(2015Y011)from POSCO Engineering Solution Centerthe Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government Ministry of Trade Industry and Energy(MOTIE).(2015 Establishment of GEM,No.H2001-13-1001)
文摘In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been investigated before.Thus,a finite element(FE)model was presented to calculate the stress distribution in a sleeve and strip coil when 1-3mm-thick stainless steel was wound around the sleeve.The FE model was developed by extending aprevious model by adding a sleeve between the mandrel and strip,and by modifying the boundary and interaction conditions.The strip winding process was divided into an initial process and a steady-state process.During the initial process,the minimum and maximum pressure required on the belt wrapper to maintain coil shape by self-friction of the strip was calculated by the FE model when the belt wrapper is ejected at the end of the initial process.After the initial process,an analytical model of the steady-state process was established to calculate the stress distribution and was compared with the FE model to validate it.The suggested analytical model took 11 sto give the same stress distribution that the FE model took 30 dto produce.
文摘The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.
文摘以国内某300MWe级核电站冷却剂泵为对象,从安全性出发,利用流固耦合技术,通过求解流体和固体耦合方程,对稳定工况下的叶片应力进行计算和分析。理论分析表明,主泵动静叶片的应力主要包括离心力引起的拉应力、流场压力引起的弯、扭应力和温度场产生的热应力;通过对计算结果进行分析,得到结论:最大米塞斯等效应力发生在固支约束处,叶片应力不具有严格的周期性,导叶体段复杂的内部流场是其应力分布无规律性的内在原因;综合对比计算和理论分析结果,证明动静叶片应力的差异性,并简要分析上述差异的主要影响因素。由第四强度理论进行的校核结果证明:主泵满足美国机械工程师协会(American Society of Mechanical Engineers,ASME)的强度要求。为改进叶片翼型设计、保障主泵水力性能和强度要求提供有效依据。