The coupled wave theory for volume holographic grating with curved interference fringes has been proposed based on the Kogelnik’s coupled wave theory with the plane interference fringes. The formula about the magnitu...The coupled wave theory for volume holographic grating with curved interference fringes has been proposed based on the Kogelnik’s coupled wave theory with the plane interference fringes. The formula about the magnitude and directional angle of grating vector in arbitrary position of volume holographic grating with curved grating has been deduced. We found that the wavelength selectivity and angular selectivity may be different in different position of volume holographic curved stripe grating which depend on the angle between the propagation vector of reference beam and signal beam. The larger the angle, the greater the angle and wavelength selectivity, whereas the weaker.展开更多
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crysta...Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.展开更多
文摘The coupled wave theory for volume holographic grating with curved interference fringes has been proposed based on the Kogelnik’s coupled wave theory with the plane interference fringes. The formula about the magnitude and directional angle of grating vector in arbitrary position of volume holographic grating with curved grating has been deduced. We found that the wavelength selectivity and angular selectivity may be different in different position of volume holographic curved stripe grating which depend on the angle between the propagation vector of reference beam and signal beam. The larger the angle, the greater the angle and wavelength selectivity, whereas the weaker.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CCA03500), and the National Natural Science Foundation of China (Grant No 60177016).
文摘Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.