OBJECTIVE:To verify the hypothesis that electroacupuncture inhibits the hyperactivity of the hypothalamic-pituitary-adrenal(HPA)axis via regulating the expression of glial fibrillary acidic protein(GFAP)in the hippoca...OBJECTIVE:To verify the hypothesis that electroacupuncture inhibits the hyperactivity of the hypothalamic-pituitary-adrenal(HPA)axis via regulating the expression of glial fibrillary acidic protein(GFAP)in the hippocampus of acute myocardial ischemia(AMI)rats.METHODS:Sixty-six healthy male Sprague-Dawley rats were randomly divided into five groups:Sham,AMI(Model),electroacupuncture at Shenmen(HT7)-Tongli(HT5)segment(EA),non-acupoint electroacupuncture(Control),and Model+corticosterone(Model+CORT).AMI was induced via occlusion of the left anterior descending coronary artery,followed by 3 d of electroacupuncture at Shenmen(HT7)-Tongli(HT5)segment.In the Control group,electroacupuncture was applied at points lying 5 and 10 mm from the base of the tail.The AMI+CORT group was injected with CORT(20 mg/kg)in saline.Hemorheology,electrocardiography(ECG),hematoxylin and eosin staining,and expression of glycogen phosphorylase BB(GPBB)and heart-type fatty acid-binding protein(H-FABP)were used to assess cardiac function.The effects of adrenocorticotropic hormone(ACTH)and CORT were evaluated by enzymelinked immunosorbent assay.Protein expression in the Sham and Model groups were screened by tandem mass tag-based quantitative proteomics analysis.Protein expression was evaluated by Western blotting(vimentin and GFAP)and immunofluorescence staining(GFAP).RESULTS:Compared with the Sham group,the hemorheology indicators,heart rate,ECG-ST segment elevation,and GPBB and H-FABP levels were higher in Model rats.The EA group showed reductions in these indicators compared with the Model group.Similarly,in Model rats,the expression of ACTH and CORT were significantly increased compared with the Sham group.The EA group also showed reduced expression of ACTH and CORT.Importantly,proteomics analysis showed that vimentin was differentially expressed in Model rats.Compared with the Sham group,vimentin and GFAP expression in the hippocampus was increased in the Model group but decreased in the AMI+EA group.Additionally,intraperitoneal injectio展开更多
Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation,adhesion,differentiation,and embryogenesis.The downstream effectors through which Rap1A mediates its diverse effec...Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation,adhesion,differentiation,and embryogenesis.The downstream effectors through which Rap1A mediates its diverse effects are largely unknown.Here we show that Rap1A,but not the related small G proteins Rap2 or Ras,binds the tumor suppressor Ras association domain family 1A(RASSF1A)in a manner that is regulated by phosphorylation of RASSF1A.Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.展开更多
基金Natural Science Foundation-funded Project:Exploring the Mechanism of Anti-Ischemic Effect of Acupuncture Based on the Regulation of Hippocampal-HPA Axis by Glutamatergic Neurons(No.82004462)Opening Project of Zhejiang Provincial Preponderant and Characteristic Subject of Key University(Chinese Traditional Medicine):Study of the Mechanism of Action of Acupuncture in the Treatment of Myocardial Ischemia in Rats Based on the Amygdala Glutamatergic System-Mediated Affective Changes(ZYXYB2019002)+1 种基金National Key Research and Development Program of China:Influence of Heart and Lung Meridians on Heart and Lung Function(No.SQ2018YFC170298)National Natural Science Foundation of Anhui:Mechanism of Action of Intestinal Flora Involved in the Intervention of Myocardial Ischemia by Acupuncture of the Heart Meridian(No.1908085MH289)。
文摘OBJECTIVE:To verify the hypothesis that electroacupuncture inhibits the hyperactivity of the hypothalamic-pituitary-adrenal(HPA)axis via regulating the expression of glial fibrillary acidic protein(GFAP)in the hippocampus of acute myocardial ischemia(AMI)rats.METHODS:Sixty-six healthy male Sprague-Dawley rats were randomly divided into five groups:Sham,AMI(Model),electroacupuncture at Shenmen(HT7)-Tongli(HT5)segment(EA),non-acupoint electroacupuncture(Control),and Model+corticosterone(Model+CORT).AMI was induced via occlusion of the left anterior descending coronary artery,followed by 3 d of electroacupuncture at Shenmen(HT7)-Tongli(HT5)segment.In the Control group,electroacupuncture was applied at points lying 5 and 10 mm from the base of the tail.The AMI+CORT group was injected with CORT(20 mg/kg)in saline.Hemorheology,electrocardiography(ECG),hematoxylin and eosin staining,and expression of glycogen phosphorylase BB(GPBB)and heart-type fatty acid-binding protein(H-FABP)were used to assess cardiac function.The effects of adrenocorticotropic hormone(ACTH)and CORT were evaluated by enzymelinked immunosorbent assay.Protein expression in the Sham and Model groups were screened by tandem mass tag-based quantitative proteomics analysis.Protein expression was evaluated by Western blotting(vimentin and GFAP)and immunofluorescence staining(GFAP).RESULTS:Compared with the Sham group,the hemorheology indicators,heart rate,ECG-ST segment elevation,and GPBB and H-FABP levels were higher in Model rats.The EA group showed reductions in these indicators compared with the Model group.Similarly,in Model rats,the expression of ACTH and CORT were significantly increased compared with the Sham group.The EA group also showed reduced expression of ACTH and CORT.Importantly,proteomics analysis showed that vimentin was differentially expressed in Model rats.Compared with the Sham group,vimentin and GFAP expression in the hippocampus was increased in the Model group but decreased in the AMI+EA group.Additionally,intraperitoneal injectio
基金SKV also acknowledges the award of the Commonwealth Scholarship and the financial support received from the Department of Medical Oncology,Medical Sciences Division,The University of Oxford,Oxford,UK and the Cancer Research UK.
文摘Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation,adhesion,differentiation,and embryogenesis.The downstream effectors through which Rap1A mediates its diverse effects are largely unknown.Here we show that Rap1A,but not the related small G proteins Rap2 or Ras,binds the tumor suppressor Ras association domain family 1A(RASSF1A)in a manner that is regulated by phosphorylation of RASSF1A.Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.