Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825...Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.展开更多
Ti(C, N)-TiB2 composite coatings were deposited by means of reactive low pressure plasma spraying (LPPS) based on the technology of self-propagating high-temperature synthesis (SHS). The original powders were mixtures...Ti(C, N)-TiB2 composite coatings were deposited by means of reactive low pressure plasma spraying (LPPS) based on the technology of self-propagating high-temperature synthesis (SHS). The original powders were mixtures of Ti and B4C powders. The powders were mixed by ball mill and then spray-dried and at last sintered to be suitable for spraying. Two spraying distances were selected for LPPS. Scanning electron microscopy (SEM) was used to investigate the morphologies of powders for spraying and the microstructures of the coatings. The phase compositions of coatings were measured by X-ray diffraction (XRD). Spray-dried and sintered powders are denser and better bond than only spray-dried powders. The composite coating is composed of TiB2, TiC0.3N0.7, TiN0.3, Ti4N3-x and impurity phase of Ti5Si3 with 300 mm spraying distance. Partly unreacted B4C powders remained in the coating for 240 mm spraying distance, which may be inadequate reaction. No titanium oxide was detected in the composite coating for the relative high vacuum degree of LPPS. The anti-corrosion property of LPPS sprayed Ti(C, N)-TiB2 composite coating with 300 mm spraying distance in electrolytic solution is superior to that of 240 mm spraying distance. Microhardness of Ti(C, N)-TiB2 composite coating is relatively low due to the unconsolidated structure of the coating. The solving methods to improve property of composite coating are finally put forward in the paper.展开更多
目的:比较Tetric EvoCeram、Venus和Filtek3种光固化复合树脂大体积充填的固化深度和显微硬度。方法:根据ISO4049-2000标准测量3种复合树脂的固化深度,并使用维氏显微硬度仪测量其显微硬度。测试结果用单因素方差分析和Tukey post hoc ...目的:比较Tetric EvoCeram、Venus和Filtek3种光固化复合树脂大体积充填的固化深度和显微硬度。方法:根据ISO4049-2000标准测量3种复合树脂的固化深度,并使用维氏显微硬度仪测量其显微硬度。测试结果用单因素方差分析和Tukey post hoc HSD进行分析。结果:3种复合树脂大体积充填的固化深度之间没有显著差异,且均大于4 mm。但表面维氏硬度之间三者均有显著差异(P<0.05),从大到小依次为:Tetric EvoCeram组>Filtek组>Venus组。结论:综合两方面指标,Tetric EvoCeram树脂机械性能较高。展开更多
The present communication addresses an interesting problem related to the indeterminacy in hardness of superelastic NiTi reported by Xu et al. The origin of the indeterminacy is attributed to the inadequacy of the con...The present communication addresses an interesting problem related to the indeterminacy in hardness of superelastic NiTi reported by Xu et al. The origin of the indeterminacy is attributed to the inadequacy of the conventional Vickers hardness testing measurement which does not record elastic deformation, and thus the indeterminacy may be removed with suitable techniques. Concepts of hardness in relation to deformation are clarified. Recommendations for measuring the hardness of NiTi and other elastic-plastic materials are suggested, together with comments on the advantages and disadvantages of each of these methods.展开更多
文摘Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.
文摘Ti(C, N)-TiB2 composite coatings were deposited by means of reactive low pressure plasma spraying (LPPS) based on the technology of self-propagating high-temperature synthesis (SHS). The original powders were mixtures of Ti and B4C powders. The powders were mixed by ball mill and then spray-dried and at last sintered to be suitable for spraying. Two spraying distances were selected for LPPS. Scanning electron microscopy (SEM) was used to investigate the morphologies of powders for spraying and the microstructures of the coatings. The phase compositions of coatings were measured by X-ray diffraction (XRD). Spray-dried and sintered powders are denser and better bond than only spray-dried powders. The composite coating is composed of TiB2, TiC0.3N0.7, TiN0.3, Ti4N3-x and impurity phase of Ti5Si3 with 300 mm spraying distance. Partly unreacted B4C powders remained in the coating for 240 mm spraying distance, which may be inadequate reaction. No titanium oxide was detected in the composite coating for the relative high vacuum degree of LPPS. The anti-corrosion property of LPPS sprayed Ti(C, N)-TiB2 composite coating with 300 mm spraying distance in electrolytic solution is superior to that of 240 mm spraying distance. Microhardness of Ti(C, N)-TiB2 composite coating is relatively low due to the unconsolidated structure of the coating. The solving methods to improve property of composite coating are finally put forward in the paper.
文摘目的:比较Tetric EvoCeram、Venus和Filtek3种光固化复合树脂大体积充填的固化深度和显微硬度。方法:根据ISO4049-2000标准测量3种复合树脂的固化深度,并使用维氏显微硬度仪测量其显微硬度。测试结果用单因素方差分析和Tukey post hoc HSD进行分析。结果:3种复合树脂大体积充填的固化深度之间没有显著差异,且均大于4 mm。但表面维氏硬度之间三者均有显著差异(P<0.05),从大到小依次为:Tetric EvoCeram组>Filtek组>Venus组。结论:综合两方面指标,Tetric EvoCeram树脂机械性能较高。
文摘The present communication addresses an interesting problem related to the indeterminacy in hardness of superelastic NiTi reported by Xu et al. The origin of the indeterminacy is attributed to the inadequacy of the conventional Vickers hardness testing measurement which does not record elastic deformation, and thus the indeterminacy may be removed with suitable techniques. Concepts of hardness in relation to deformation are clarified. Recommendations for measuring the hardness of NiTi and other elastic-plastic materials are suggested, together with comments on the advantages and disadvantages of each of these methods.