The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The class...The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.展开更多
Vibration at the stern area is generally the most severe of the entire ship hull,which has always attracted special attention by ship designers and researchers.With reference to a real ship structural layout,a scaled ...Vibration at the stern area is generally the most severe of the entire ship hull,which has always attracted special attention by ship designers and researchers.With reference to a real ship structural layout,a scaled stern model of steel structure was innovatively designed to carry out the mode and response tests.Corresponding finite element(FE)model representing the tested structure was established for verification of commonly-used calculation methods of modal parameters and response.Good agreement between experimental and numerical results demonstrates the credibility of FE method,and some key points of modeling and calculating are discussed.In addition,with the combination of the experiment and calculation,some vibration characteristics of ship stern structure are summarized for future ship design guideline.展开更多
China Spallation Neutron Source (CSNS) is a high intensity proton accelerator-based facility. Its acceler- ator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumula...China Spallation Neutron Source (CSNS) is a high intensity proton accelerator-based facility. Its acceler- ator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates an 80 MeV proton beam and accelerates it to 1.6 GeV, with a repetition rate of 25 Hz. The AC dipole of the CSNS/RCS is operated at a 25 Hz sinusoidal alternating current which causes severe vibration. The vibration will influence the long-term safety and reliable operation of the magnet. The CSNS/RCS AC dipole-girder system takes vibration isolator to decrease the vibratory force and the vibration amplitude of the dipole. For the long-term safety and reliable operation of the dipole, it is very important to study the dynanfic characteristics of the dipole-girder system. This paper takes the dipole-girder as a specific model system. A method for studying the dynamic characteristics of the system is put forward by combining theoretical calculation with experimental testing. The modal parameters with and without vibration isolator of the dipole-girder system are obtained through ANSYS simulation and testing. Then, the dynamic response of the system is calculated with modal analysis and vibration testing data. With the simulation and testing method, the dynamic characteristics of the AC dipole-girder are studied.展开更多
Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibratio...Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibration, environmental attack and long-term service. Moreover, dynamical systems of a beam usually possess a non-linear character, which causes practical difficulties on the model-based damage detection techniques. This paper presents a novel approach to detect damage in a simply supported beam. In this study, a numerical simulation using the Finite Element Method (FEM) has been done to determine the frequencies to detect the crack in a concrete beam of length 0.12 m and width 0.015 m. A vibration-based model is employed to simulate the results by using COMSOL Multiphysics. At the tip, by performing the computational analysis it is found that the presence of cracks affects the natural frequencies of the concrete structure. It is observed that after applying load</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the frequencies of the cracked beam ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been changed</span><span style="font-family:Verdana;"> with the variation of the location of the crack for all the modes of vibration. It also found that maximum frequency reserved at the cracked point so it will also help us to detect different hidden defect</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in any structure. A comparison is also made with the experimental results. It is also found that the effect of crack is more near the fixed end than at the free end.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.51375032,51335003)
文摘The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method.
文摘Vibration at the stern area is generally the most severe of the entire ship hull,which has always attracted special attention by ship designers and researchers.With reference to a real ship structural layout,a scaled stern model of steel structure was innovatively designed to carry out the mode and response tests.Corresponding finite element(FE)model representing the tested structure was established for verification of commonly-used calculation methods of modal parameters and response.Good agreement between experimental and numerical results demonstrates the credibility of FE method,and some key points of modeling and calculating are discussed.In addition,with the combination of the experiment and calculation,some vibration characteristics of ship stern structure are summarized for future ship design guideline.
文摘China Spallation Neutron Source (CSNS) is a high intensity proton accelerator-based facility. Its acceler- ator complex includes two main parts: an H- linac and a rapid cycling synchrotron (RCS). The RCS accumulates an 80 MeV proton beam and accelerates it to 1.6 GeV, with a repetition rate of 25 Hz. The AC dipole of the CSNS/RCS is operated at a 25 Hz sinusoidal alternating current which causes severe vibration. The vibration will influence the long-term safety and reliable operation of the magnet. The CSNS/RCS AC dipole-girder system takes vibration isolator to decrease the vibratory force and the vibration amplitude of the dipole. For the long-term safety and reliable operation of the dipole, it is very important to study the dynanfic characteristics of the dipole-girder system. This paper takes the dipole-girder as a specific model system. A method for studying the dynamic characteristics of the system is put forward by combining theoretical calculation with experimental testing. The modal parameters with and without vibration isolator of the dipole-girder system are obtained through ANSYS simulation and testing. Then, the dynamic response of the system is calculated with modal analysis and vibration testing data. With the simulation and testing method, the dynamic characteristics of the AC dipole-girder are studied.
文摘Nowadays presence of crack in different engineering structures becomes a serious threat to the performance. Since most of the civil and mechanical structures may be damaged due to material fatigue, mechanical vibration, environmental attack and long-term service. Moreover, dynamical systems of a beam usually possess a non-linear character, which causes practical difficulties on the model-based damage detection techniques. This paper presents a novel approach to detect damage in a simply supported beam. In this study, a numerical simulation using the Finite Element Method (FEM) has been done to determine the frequencies to detect the crack in a concrete beam of length 0.12 m and width 0.015 m. A vibration-based model is employed to simulate the results by using COMSOL Multiphysics. At the tip, by performing the computational analysis it is found that the presence of cracks affects the natural frequencies of the concrete structure. It is observed that after applying load</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the frequencies of the cracked beam ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:Verdana;"> been changed</span><span style="font-family:Verdana;"> with the variation of the location of the crack for all the modes of vibration. It also found that maximum frequency reserved at the cracked point so it will also help us to detect different hidden defect</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in any structure. A comparison is also made with the experimental results. It is also found that the effect of crack is more near the fixed end than at the free end.