针对在测距过程中超声波的能量损耗和回波信号微弱的问题,在分析问题产生的基础上,利用可变增益放大器AD8338设计了超声波自动增益控制(AGC)接收补偿电路,动态范围达到80 d B。实验结果表明:该自动增益补偿电路结构简单,不需要额外的控...针对在测距过程中超声波的能量损耗和回波信号微弱的问题,在分析问题产生的基础上,利用可变增益放大器AD8338设计了超声波自动增益控制(AGC)接收补偿电路,动态范围达到80 d B。实验结果表明:该自动增益补偿电路结构简单,不需要额外的控制器件,可以使不同距离的超声波回波信号维持在合适的幅度范围内,有效地解决了回波信号衰减等问题,提高测距精度。展开更多
A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adap...A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adaptive algorithm exploits both the low frequency gain loop and the equalizer loop to minimize the inter-symbol interference (ISI) for a variety of cable characteristics. In addition, an offset cancellation loop is used to alleviate the offset influence of the signal path. The adaptive equalizer core occupies an area of 0.3567 mm2 and consumes a power consumption of 81.7 mW with 1.8 V power supply. Experiment results demonstrate that the equalizer could compensate for a designed cable loss with 0.23 UI peak-to-peak jitter.展开更多
文摘针对在测距过程中超声波的能量损耗和回波信号微弱的问题,在分析问题产生的基础上,利用可变增益放大器AD8338设计了超声波自动增益控制(AGC)接收补偿电路,动态范围达到80 d B。实验结果表明:该自动增益补偿电路结构简单,不需要额外的控制器件,可以使不同距离的超声波回波信号维持在合适的幅度范围内,有效地解决了回波信号衰减等问题,提高测距精度。
基金Project supported by the National Natural Science Foundation of China(No.61376099)the Foundation for Fundamental Research of China(No.JSZL2016110B003)the Major Fundamental Research Program of Shaanxi(No.2017ZDJC-26)
文摘A 5 Gb/s adaptive equalizer with a new adaptation scheme is presented here by using 0.13μm CMOS process. The circuit consists of the combination of equalizer amplifier, limiter amplifier and adaptation loop. The adaptive algorithm exploits both the low frequency gain loop and the equalizer loop to minimize the inter-symbol interference (ISI) for a variety of cable characteristics. In addition, an offset cancellation loop is used to alleviate the offset influence of the signal path. The adaptive equalizer core occupies an area of 0.3567 mm2 and consumes a power consumption of 81.7 mW with 1.8 V power supply. Experiment results demonstrate that the equalizer could compensate for a designed cable loss with 0.23 UI peak-to-peak jitter.