A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones,...A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems.展开更多
Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the...Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the combined economic emission dispatch(CEED)problem.Inspired by the foraging behavior in the slime mould algorithm(SMA),the kernel matrix of the kernel search optimizer(KSO)is intensified.The proposed BKSO is superior to the standard KSO in terms of exploitation ability,robustness,and convergence rate.The CEC2013 test function is used to assess the improved KSO's performance and compared to 11 well-known optimization algorithms.BKSO performs better in statistical results and convergence curves.At the same time,BKSO achieves better fuel costs and fewer pollution emissions by testing with four real CEED cases,and the Pareto solution obtained is also better than other MAs.Based on the experimental results,BKSO has better performance than other comparable MAs and can provide more economical,robust,and cleaner solutions to CEED problems.展开更多
This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,th...This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.展开更多
This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading ef...This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading effects of generators,carbon tax,and prohibited operating zones of generators,respectively.ASHLO algorithm,involves random learning operator,individual learning operator,social learning operator and adaptive strategies.To compare and analyze the computation performance of the ASHLO method,the proposed ASHLO method and other heuristic intelligent optimization methods are employed to solve OPF problem on the modified IEEE 30-bus and 118-bus AC/DC hybrid test system.Numerical results indicate that the ASHLO method has good convergent property and robustness.Meanwhile,the impacts of wind speeds and locations of HVDC transmission line integrated into the AC network on the OPF results are systematically analyzed.展开更多
In recent years, various heuristic optimization methods have been proposed to solve economic dispatch (ED) problem in power systems. This paper presents the well-known power system ED problem solution consider- ing ...In recent years, various heuristic optimization methods have been proposed to solve economic dispatch (ED) problem in power systems. This paper presents the well-known power system ED problem solution consider- ing valve-point effect by a new optimization algorithm called artificial bee colony (ABC). The proposed approach has been applied to various test systems with incremental fuel cost function, taking into account the valve-point effects. The results show that the proposed approach is efficient and robust when compared with other optimiza- tion algorithms reported in literature.展开更多
To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given va...To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given valve overlap degree were obtained for a 600MW steam turbine unit by the method of theoretical calculation combined with simulation test, and the influence of valve overlap degree on governing stage efficiency and steam chest pressure had been also analyzed. This paper discussed the selection of rational overlap degree and introduced a new method of building model for governing stage efficiency of steam turbine in constant pressure operation condition, which provided theoretical guidance for optimization research on nozzle governing steam turbine operation.展开更多
Short-term hydrothermal scheduling(STHTS) is a non-linear and complex optimization problem with a set of operational hydraulic and thermal constraints. Earlier, this problem has been addressed by several classical tec...Short-term hydrothermal scheduling(STHTS) is a non-linear and complex optimization problem with a set of operational hydraulic and thermal constraints. Earlier, this problem has been addressed by several classical techniques; however, due to limitations such as non-linearity and non-convexity in cost curves, artificial intelligence tools based techniques are being used to solve the STHTS problem. In this paper an improved chaotic hybrid differential evolution(ICHDE) algorithm is proposed to find an optimal solution to this problem taking into account practical constraints. A self-adjusted parameter setting is obtained in differential evolution(DE) with the application of chaos theory, and a chaotic hybridized local search mechanism is embedded in DE to effectively prevent it from premature convergence. Furthermore, heuristic constraint handling techniques without any penalty factor setting are adopted to handle the complex hydraulic and thermal constraints. The superiority and effectiveness of the developed methodology are evaluated by its application in two illustrated hydrothermal test systems taken from the literature. The transmission line losses, prohibited discharge zones of hydel plants, and ramp rate limits of thermal plants are also taken into account. The simulation results reveal that the proposed technique is competent to produce an encouraging solution as compared with other recently established evolutionary approaches.展开更多
Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate th...Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate the mechanism of this complex system with a multi-level structure and multi-variables,it is necessary to construct a theoretical model with a clear physical concept to describe it.However,since the physical processes contain complex variations of structural parameters and flow properties,there is a problem of simplifying approximations in deriving analytical mathematical relations.The advantages of multi-physics field numerical analysis can compensate for this shortcoming of analytical formulations.Based on this,we constructed a whole-valve transfer function model to realize the mechanism analysis and evaluate the operating point drift when a thermal effect acts on a servo valve.The results show that the asymmetric fit relationship between the armature-nozzle assemblies is an important reason for the drift of the operating point caused by the thermal effect.Differences in structural parameters and fluid medium characteristics at different temperatures lead to nonlinear changes in the operating point.When the deviation angle reaches±1°,an increase in temperature will cause the absolute value of the tangent slope of the displacement deviation of the spool to decrease from 1.44×10^(−5) m/℃to 1.25×10^(−6) m/℃.The influence of the deviation angle is reflected in the change in the absolute value of the tangent slope of the pressure deviation from 1.14×10^(3) Pa/℃to 110 Pa/℃.展开更多
基金supported in part by the National Key Research and Development Program of China(2017YFB0306400)in part by the National Natural Science Foundation of China(61573089,71472080,71301066)Liaoning Province Dr.Research Foundation of China(20175032)
文摘A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems.
基金This research was supported by the Science&Technology Development Project of Jilin Province,China(YDZJ202201ZYTS555)the Science&Technology Research Project of the Education Department of Jilin Province,China(JJKH20220244KJ)。
文摘Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the combined economic emission dispatch(CEED)problem.Inspired by the foraging behavior in the slime mould algorithm(SMA),the kernel matrix of the kernel search optimizer(KSO)is intensified.The proposed BKSO is superior to the standard KSO in terms of exploitation ability,robustness,and convergence rate.The CEC2013 test function is used to assess the improved KSO's performance and compared to 11 well-known optimization algorithms.BKSO performs better in statistical results and convergence curves.At the same time,BKSO achieves better fuel costs and fewer pollution emissions by testing with four real CEED cases,and the Pareto solution obtained is also better than other MAs.Based on the experimental results,BKSO has better performance than other comparable MAs and can provide more economical,robust,and cleaner solutions to CEED problems.
基金supported by Guangdong Yudean Group Co.LTD,Guangzhou 510630,China.
文摘This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.
基金supported by National Natural Science Foundation of China(No.51377103)the technology project of State Grid Corporation of China:Research on Multi-Level Decomposition Coordination of the Pareto Set of Multi-Objective Optimization Problem in Bulk Power System(No.SGSXDKYDWKJ2015-001)the support from State Energy Smart Grid R&D Center(SHANGHAI)
文摘This paper employs an efficacious analytical tool,adaptive simplified human learning optimization(ASHLO)algorithm,to solve optimal power flow(OPF)problem in AC/DC hybrid power system,considering valve-point loading effects of generators,carbon tax,and prohibited operating zones of generators,respectively.ASHLO algorithm,involves random learning operator,individual learning operator,social learning operator and adaptive strategies.To compare and analyze the computation performance of the ASHLO method,the proposed ASHLO method and other heuristic intelligent optimization methods are employed to solve OPF problem on the modified IEEE 30-bus and 118-bus AC/DC hybrid test system.Numerical results indicate that the ASHLO method has good convergent property and robustness.Meanwhile,the impacts of wind speeds and locations of HVDC transmission line integrated into the AC network on the OPF results are systematically analyzed.
文摘In recent years, various heuristic optimization methods have been proposed to solve economic dispatch (ED) problem in power systems. This paper presents the well-known power system ED problem solution consider- ing valve-point effect by a new optimization algorithm called artificial bee colony (ABC). The proposed approach has been applied to various test systems with incremental fuel cost function, taking into account the valve-point effects. The results show that the proposed approach is efficient and robust when compared with other optimiza- tion algorithms reported in literature.
文摘To solve the problems existing in the flow characteristics of steam turbine unit, the influence of valve overlap degree on nozzle governing steam turbine had been studied. The combined flow characteristics of given valve overlap degree were obtained for a 600MW steam turbine unit by the method of theoretical calculation combined with simulation test, and the influence of valve overlap degree on governing stage efficiency and steam chest pressure had been also analyzed. This paper discussed the selection of rational overlap degree and introduced a new method of building model for governing stage efficiency of steam turbine in constant pressure operation condition, which provided theoretical guidance for optimization research on nozzle governing steam turbine operation.
文摘Short-term hydrothermal scheduling(STHTS) is a non-linear and complex optimization problem with a set of operational hydraulic and thermal constraints. Earlier, this problem has been addressed by several classical techniques; however, due to limitations such as non-linearity and non-convexity in cost curves, artificial intelligence tools based techniques are being used to solve the STHTS problem. In this paper an improved chaotic hybrid differential evolution(ICHDE) algorithm is proposed to find an optimal solution to this problem taking into account practical constraints. A self-adjusted parameter setting is obtained in differential evolution(DE) with the application of chaos theory, and a chaotic hybridized local search mechanism is embedded in DE to effectively prevent it from premature convergence. Furthermore, heuristic constraint handling techniques without any penalty factor setting are adopted to handle the complex hydraulic and thermal constraints. The superiority and effectiveness of the developed methodology are evaluated by its application in two illustrated hydrothermal test systems taken from the literature. The transmission line losses, prohibited discharge zones of hydel plants, and ramp rate limits of thermal plants are also taken into account. The simulation results reveal that the proposed technique is competent to produce an encouraging solution as compared with other recently established evolutionary approaches.
基金supported by the Civil Aircraft Research Project(No.MJ-2016-S-54),China。
文摘Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate the mechanism of this complex system with a multi-level structure and multi-variables,it is necessary to construct a theoretical model with a clear physical concept to describe it.However,since the physical processes contain complex variations of structural parameters and flow properties,there is a problem of simplifying approximations in deriving analytical mathematical relations.The advantages of multi-physics field numerical analysis can compensate for this shortcoming of analytical formulations.Based on this,we constructed a whole-valve transfer function model to realize the mechanism analysis and evaluate the operating point drift when a thermal effect acts on a servo valve.The results show that the asymmetric fit relationship between the armature-nozzle assemblies is an important reason for the drift of the operating point caused by the thermal effect.Differences in structural parameters and fluid medium characteristics at different temperatures lead to nonlinear changes in the operating point.When the deviation angle reaches±1°,an increase in temperature will cause the absolute value of the tangent slope of the displacement deviation of the spool to decrease from 1.44×10^(−5) m/℃to 1.25×10^(−6) m/℃.The influence of the deviation angle is reflected in the change in the absolute value of the tangent slope of the pressure deviation from 1.14×10^(3) Pa/℃to 110 Pa/℃.