鉴于维吾尔语丰富的形态变化产生大量单词引起的集外词(out of vocabulary,OOV)问题,为了定量研究OOV对维吾尔语语音识别的影响,采用控制语料库测试集OOV的算法及最佳文本挑选算法对不同OOV的测试集进行实验,算法通过Python语言实现。...鉴于维吾尔语丰富的形态变化产生大量单词引起的集外词(out of vocabulary,OOV)问题,为了定量研究OOV对维吾尔语语音识别的影响,采用控制语料库测试集OOV的算法及最佳文本挑选算法对不同OOV的测试集进行实验,算法通过Python语言实现。应用该算法进行电话语音库的文本转写,构建了维吾尔语的电话语音库。实验结果表明,该控制测试集OOV的方法能够有效地提高维吾尔语语音识别率。展开更多
To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conven...To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition.展开更多
文摘鉴于维吾尔语丰富的形态变化产生大量单词引起的集外词(out of vocabulary,OOV)问题,为了定量研究OOV对维吾尔语语音识别的影响,采用控制语料库测试集OOV的算法及最佳文本挑选算法对不同OOV的测试集进行实验,算法通过Python语言实现。应用该算法进行电话语音库的文本转写,构建了维吾尔语的电话语音库。实验结果表明,该控制测试集OOV的方法能够有效地提高维吾尔语语音识别率。
基金The National Natural Science Foundation of China(No.61673108,61231002)
文摘To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition.