Let X denote a compact metric space with distance d and F : X×R→ X or Ft : X→X denote a C0-flow. From the point of view of ergodic theory, all important dynamical behaviors take place on a full measure set. T...Let X denote a compact metric space with distance d and F : X×R→ X or Ft : X→X denote a C0-flow. From the point of view of ergodic theory, all important dynamical behaviors take place on a full measure set. The aim of this paper is to introduce the notion of Banach upper density recurrent points and to show that the closure of the set of all Banach upper density recurrent points equals the measure center or the minimal center of attraction for a C0-flow. Moreover, we give an example to show that the set of quasi-weakly almost periodic points can be included properly in the set of Banach upper density recurrent points, and point out that the set of Banach upper density recurrent points can be included properly in the set of recurrent points.展开更多
Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we ...Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.展开更多
We will present some restrictions for a rigidity sequence of a nontrivial topological dynamical system. For instance, any finite linear combination of a rigidity sequence by integers has upper Banach density zero. How...We will present some restrictions for a rigidity sequence of a nontrivial topological dynamical system. For instance, any finite linear combination of a rigidity sequence by integers has upper Banach density zero. However, there are rigidity sequences for some uniformly rigid systems whose reciprocal sums are infinite. We also show that if F is a family of subsets of natural numbers whose dual F* is filter, then a minimal F*-mixing system does not have F+-rigid factor for F∈F.展开更多
基金Supported by National Natural Science Foundations of China(Grant Nos.11261039,11661054)National Natural Science Foundation of Jiangxi(Grant No.20132BAB201009)
文摘Let X denote a compact metric space with distance d and F : X×R→ X or Ft : X→X denote a C0-flow. From the point of view of ergodic theory, all important dynamical behaviors take place on a full measure set. The aim of this paper is to introduce the notion of Banach upper density recurrent points and to show that the closure of the set of all Banach upper density recurrent points equals the measure center or the minimal center of attraction for a C0-flow. Moreover, we give an example to show that the set of quasi-weakly almost periodic points can be included properly in the set of Banach upper density recurrent points, and point out that the set of Banach upper density recurrent points can be included properly in the set of recurrent points.
基金part by the Foundations of the Jiangxi Natural Science Committee(No:0611005),China.
文摘Falconer[1] used the relationship between upper convex density and upper spherical density to obtain elementary density bounds for s-sets at H S-almost all points of the sets. In this paper, following Falconer[1], we first provide a basic method to estimate the lower bounds of these two classes of set densities for the self-similar s-sets satisfying the open set condition (OSC), and then obtain elementary density bounds for such fractals at all of their points. In addition, we apply the main results to the famous classical fractals and get some new density bounds.
文摘We will present some restrictions for a rigidity sequence of a nontrivial topological dynamical system. For instance, any finite linear combination of a rigidity sequence by integers has upper Banach density zero. However, there are rigidity sequences for some uniformly rigid systems whose reciprocal sums are infinite. We also show that if F is a family of subsets of natural numbers whose dual F* is filter, then a minimal F*-mixing system does not have F+-rigid factor for F∈F.