In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cell...In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cells was computed with an exact Riemann solver, and the improved dry Riemann solver was applied to deal with the wet/dry problems. The model was verified through computing some typical examples and the tidal bore on the Qiantang River. The results show that the scheme is robust and accurate, and could be applied extensively to engineering problems.展开更多
The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed...The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.展开更多
The modified QUICK scheme on unstructured grid was used to improve the advection flux approximation, and the depth-averaged κ-ε turbulence model with the scheme based on FVM by SIMPLE series algorithm was establishe...The modified QUICK scheme on unstructured grid was used to improve the advection flux approximation, and the depth-averaged κ-ε turbulence model with the scheme based on FVM by SIMPLE series algorithm was established and applied to spur-dike flow computation. In this model, the over-relaxed approach was adopted to estimate the diffusion flux in view of its advantages in reducing errors and sustaining numerical stability usually encountered in non-orthogonal meshes. Two spur-dike cases with different defection angles (90°and 135°) were analyzed to validate the model. Computed results show that the predicted velocities and recirculation lengths are in good agreement with the observed data. Moreover, the computations on structured and unstructured grids were compared in terms of the approximately equivalent grid numbers. It can be concluded that the precision with unstructured grids is higher than that with structured grids in spite that the CPU time required is slightly more with unstructured grids Thus, it is significant to apply the method to numerical simulation of practical hydraulic engineering.展开更多
Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this pa...Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this paper,an unstructured three-dimensional fully coupled wave-current model is developed.Firstly,a parallel,unstructured wave module is developed.Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking.Then,the existing Finite-Volume Coastal Ocean Model(FVCOM) is modified to couple with the wave module.The couple procedure includes depth dependent wave radiation stress terms,Stokes drift,vertical transfer of wave-generated pressure transfer to the mean momentum equation,wave dissipation as a source term in the turbulence kinetic energy equation,and mean current advection and refraction of wave energy.Several applications are presented to evaluate the developed model.In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated.The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events.In a comparison to water level measurements at Dauphin Island,inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929.Several runs were carried out to analyze the effects of waves.The experiments show that among the processes that represent wave effects,radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level.The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.展开更多
Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of th...Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little, because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.展开更多
A flow past two side-by-side identical circular cylinders was numerically investigated with the unstructured spectral element method. From the computational results at various non-dimensional distances between cylinde...A flow past two side-by-side identical circular cylinders was numerically investigated with the unstructured spectral element method. From the computational results at various non-dimensional distances between cylinder centers T/D and the Reynolds number Re, a total of nine kinds of wake patterns were observed: four steady wake patterns, including single bluff-body steady pattern, separated double-body steady pattern and transition steady pattern for sub-critical Reynolds numbers and biased steady pattern for super-critical Reynolds numbers, and five unsteady wake patterns, including single bluff-body periodic pattern, biased quasi-steady pattern, quasi-periodic (flip-flopping) pattern, in-phase-synchronized pattern and anti-phase-synchronized pattern. Time evolution of lift and drag coefficients corresponding to each unsteady wake pattern was given.展开更多
The 2-D depth-averaged mathematical model for sediment-laden flows has been widely used in river control and other related engineering problems, and now it is usually solved on structured grids. Since the natural rive...The 2-D depth-averaged mathematical model for sediment-laden flows has been widely used in river control and other related engineering problems, and now it is usually solved on structured grids. Since the natural river is usually very complicated in plane boundary, and unstructured grids are more attractive in solving the problems with complicated domains, the following questions about solving 2-D depth-averaged model were discussed in this article: (1) a modified Bowyer algorithm was suggested to generate unstructured grids for natural rivers, (2) the Finite Volume Method (FVM) is employed to discretize the governing equations of the 2-D depth-averaged model and an implicit scheme was suggested with unstructured collocated grids, (3) the observed hydrological data of the Chenglingji Reach in the Yangtze River are used for verification of the presented method It seems that the suggested numerical scheme works very well, and the simulation results of both hydraulic characteristics and river bed deformation are in good agreement with the observed ones.展开更多
集中研究了非结构化的数据存储和查询。为了在保证查询成功率的同时最小化总的能耗,分别在存储受限和不受限两种情况下,建立了MESQ(minimizing energy on success fulquery)优化问题模型,给出并证明了最优的复本和查询个数。在此基础上...集中研究了非结构化的数据存储和查询。为了在保证查询成功率的同时最小化总的能耗,分别在存储受限和不受限两种情况下,建立了MESQ(minimizing energy on success fulquery)优化问题模型,给出并证明了最优的复本和查询个数。在此基础上,还设计了一个实用的分布式数据分发算法:BubbleGeocast,其主要包含精确自适应快速分发和基于拒绝的均匀分发两个部分,其中前者用自适应分支的方法加速数据扩散,并精确控制总的复本个数;后者根据每个节点Voronoi单元面积,决定是否接受或拒绝这个报文。从而保证了复本和查询分发的精确性、实时性、均匀性、顽健性。最后,详细的理论分析和模拟实验进一步验证了其性能。分析和实验表明,同已有工作相比,在相同查询成功率时,BubbleGeocast能量有效性平均提高了约30%,复本分发的延迟平均缩短了约30%,成功查询的延迟平均缩短了约50%。展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configur...A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.展开更多
In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosi...In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.展开更多
A three-dimensional integrated model is developed for simulating transport and final fate of oil spills in seas.The model contains two main modules,flow and transport-fate modules.The flow module uses an unstructured ...A three-dimensional integrated model is developed for simulating transport and final fate of oil spills in seas.The model contains two main modules,flow and transport-fate modules.The flow module uses an unstructured finite-volume wave-ocean coupling model.Using unstructured meshes provides great flexibility for modeling the flow in complex geometries of tidal creeks,barriers and islands.In the transport-fate module the oil dispersion is solved using a particle-tracking method.Horizontal diffusion is simulated using random walk techniques in a Monte Carlo framework,whereas the vertical diffusion process is solved on the basis of the Langeven equation.The model simulates the most significant processes that affect the motion of oil particles,such as advection,surface spreading,evaporation,dissolution,emulsification and turbulent diffusion as well as the interaction of the oil particles with the shoreline,sedimentation and the temporal variations of oil viscosity,density and surface tension.The model simulates either continuous or instantaneous oil spills,and also other toxic matter.This model has been applied to simulate the oil spill accident in the Bohai Sea.In comparison with the observations,the numerical results indicate that the model is reasonably accurate.展开更多
In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed met...In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed method could provide control volumes with arbitrarygeometry and preserve the second-order accuracy even if highly distorted grids are used. Althougharbitrary number of cell faces can be used, the hybrid quadrilateral/triangular grids are moredesirable for the simplicity of implementation and applications to engineering problems. Thepressure-velocity coupling was treated using a SIMPLE-like algorithm. The Generalized MinimumResidual (GMRES) method with the Incomplete LU (ILU) preconditioner was used to solve linearequations. Four test cases were studied for validating the proposed method. In using this method,grid quality is not important. Thus, engineers can pay mostly attention to physical mechanism ofproblems. Turbulence models can be simply integrated and the method can be straightforwardlyextended to treat three-dimensional problems.展开更多
The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In ori...The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In original LU-SGS scheme, the implicit system matrix is constructed based on the splitting of convective flux Jacobian according to its spectral radius. Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system matrix, it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed. To overcome this shortcoming, an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper. The hybrid way is that: on the cell faces having small contravariant velocity or transonic contravariant velocity, the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix, while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix. To investigate the convergence performance of the improved LU-SGS scheme, 2D and 3D turbulent flows around the NACA0012 airfoil, RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes. The nu- merical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.展开更多
In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement i...In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.展开更多
基金Project supported by the Natural Science Foundation of Zhejiang Province (Grant No: M403054).
文摘In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cells was computed with an exact Riemann solver, and the improved dry Riemann solver was applied to deal with the wet/dry problems. The model was verified through computing some typical examples and the tidal bore on the Qiantang River. The results show that the scheme is robust and accurate, and could be applied extensively to engineering problems.
文摘The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.
基金the National Nature Science Foundation of China (Grant Nos. 50679019 and 50009001)the National Basic Research Program of China (973 Program, Grant No. 2008CB418202)the Social Technology Development Foundation of Jiangsu Province (Grant No.BS2006095)
文摘The modified QUICK scheme on unstructured grid was used to improve the advection flux approximation, and the depth-averaged κ-ε turbulence model with the scheme based on FVM by SIMPLE series algorithm was established and applied to spur-dike flow computation. In this model, the over-relaxed approach was adopted to estimate the diffusion flux in view of its advantages in reducing errors and sustaining numerical stability usually encountered in non-orthogonal meshes. Two spur-dike cases with different defection angles (90°and 135°) were analyzed to validate the model. Computed results show that the predicted velocities and recirculation lengths are in good agreement with the observed data. Moreover, the computations on structured and unstructured grids were compared in terms of the approximately equivalent grid numbers. It can be concluded that the precision with unstructured grids is higher than that with structured grids in spite that the CPU time required is slightly more with unstructured grids Thus, it is significant to apply the method to numerical simulation of practical hydraulic engineering.
基金supported by the National Natural Science Foundation of China (Grant Nos.50839001 and 50779006)
文摘Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks,barriers and islands,with refined grid resolution in regions of interest and not elsewhere.In this paper,an unstructured three-dimensional fully coupled wave-current model is developed.Firstly,a parallel,unstructured wave module is developed.Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking.Then,the existing Finite-Volume Coastal Ocean Model(FVCOM) is modified to couple with the wave module.The couple procedure includes depth dependent wave radiation stress terms,Stokes drift,vertical transfer of wave-generated pressure transfer to the mean momentum equation,wave dissipation as a source term in the turbulence kinetic energy equation,and mean current advection and refraction of wave energy.Several applications are presented to evaluate the developed model.In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated.The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events.In a comparison to water level measurements at Dauphin Island,inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929.Several runs were carried out to analyze the effects of waves.The experiments show that among the processes that represent wave effects,radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level.The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.
基金China Postdoctoral Science Foundation (20100481368)National Key Laboratory Foundation of China
文摘Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little, because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.
基金the National Natural Science Foundation of China (Grant Nos. 10432020 and 10602056)the Fund for Foreign Scholars in University Research and Teaching programs (Grant No. B07033).
文摘A flow past two side-by-side identical circular cylinders was numerically investigated with the unstructured spectral element method. From the computational results at various non-dimensional distances between cylinder centers T/D and the Reynolds number Re, a total of nine kinds of wake patterns were observed: four steady wake patterns, including single bluff-body steady pattern, separated double-body steady pattern and transition steady pattern for sub-critical Reynolds numbers and biased steady pattern for super-critical Reynolds numbers, and five unsteady wake patterns, including single bluff-body periodic pattern, biased quasi-steady pattern, quasi-periodic (flip-flopping) pattern, in-phase-synchronized pattern and anti-phase-synchronized pattern. Time evolution of lift and drag coefficients corresponding to each unsteady wake pattern was given.
文摘The 2-D depth-averaged mathematical model for sediment-laden flows has been widely used in river control and other related engineering problems, and now it is usually solved on structured grids. Since the natural river is usually very complicated in plane boundary, and unstructured grids are more attractive in solving the problems with complicated domains, the following questions about solving 2-D depth-averaged model were discussed in this article: (1) a modified Bowyer algorithm was suggested to generate unstructured grids for natural rivers, (2) the Finite Volume Method (FVM) is employed to discretize the governing equations of the 2-D depth-averaged model and an implicit scheme was suggested with unstructured collocated grids, (3) the observed hydrological data of the Chenglingji Reach in the Yangtze River are used for verification of the presented method It seems that the suggested numerical scheme works very well, and the simulation results of both hydraulic characteristics and river bed deformation are in good agreement with the observed ones.
文摘集中研究了非结构化的数据存储和查询。为了在保证查询成功率的同时最小化总的能耗,分别在存储受限和不受限两种情况下,建立了MESQ(minimizing energy on success fulquery)优化问题模型,给出并证明了最优的复本和查询个数。在此基础上,还设计了一个实用的分布式数据分发算法:BubbleGeocast,其主要包含精确自适应快速分发和基于拒绝的均匀分发两个部分,其中前者用自适应分支的方法加速数据扩散,并精确控制总的复本个数;后者根据每个节点Voronoi单元面积,决定是否接受或拒绝这个报文。从而保证了复本和查询分发的精确性、实时性、均匀性、顽健性。最后,详细的理论分析和模拟实验进一步验证了其性能。分析和实验表明,同已有工作相比,在相同查询成功率时,BubbleGeocast能量有效性平均提高了约30%,复本分发的延迟平均缩短了约30%,成功查询的延迟平均缩短了约50%。
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金This project is supported by National Hi-Tech Research and Development Program of China(863 Program, No.2001AA422360) Chinese Academy of Sciences Advanced Manufacturing Technology R&D Base Foundation, Chrna(No.F000112).
文摘A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.
基金supported by the National Natural Science Foundation of China (Grants No. 50909065 and 51109039)the National Basic Research Program of China (973 Program, Grant No. 2012CB417002)
文摘In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.
基金supported by the National Natural Science Foundation of China (Grant No. 50839001)the National Basic Research Program of China ("973"Program)(Grant No. 2005CB724202)the Scientific Research Foundation of the Higher Education Institutions of Liaoning Province (Grant No. 2006T018)
文摘A three-dimensional integrated model is developed for simulating transport and final fate of oil spills in seas.The model contains two main modules,flow and transport-fate modules.The flow module uses an unstructured finite-volume wave-ocean coupling model.Using unstructured meshes provides great flexibility for modeling the flow in complex geometries of tidal creeks,barriers and islands.In the transport-fate module the oil dispersion is solved using a particle-tracking method.Horizontal diffusion is simulated using random walk techniques in a Monte Carlo framework,whereas the vertical diffusion process is solved on the basis of the Langeven equation.The model simulates the most significant processes that affect the motion of oil particles,such as advection,surface spreading,evaporation,dissolution,emulsification and turbulent diffusion as well as the interaction of the oil particles with the shoreline,sedimentation and the temporal variations of oil viscosity,density and surface tension.The model simulates either continuous or instantaneous oil spills,and also other toxic matter.This model has been applied to simulate the oil spill accident in the Bohai Sea.In comparison with the observations,the numerical results indicate that the model is reasonably accurate.
文摘In this paper, an unstructured, collocated finite volume method for solvingthe Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives weredetermined by the Gauss theorem. The proposed method could provide control volumes with arbitrarygeometry and preserve the second-order accuracy even if highly distorted grids are used. Althougharbitrary number of cell faces can be used, the hybrid quadrilateral/triangular grids are moredesirable for the simplicity of implementation and applications to engineering problems. Thepressure-velocity coupling was treated using a SIMPLE-like algorithm. The Generalized MinimumResidual (GMRES) method with the Incomplete LU (ILU) preconditioner was used to solve linearequations. Four test cases were studied for validating the proposed method. In using this method,grid quality is not important. Thus, engineers can pay mostly attention to physical mechanism ofproblems. Turbulence models can be simply integrated and the method can be straightforwardlyextended to treat three-dimensional problems.
基金Foundation item: National Natural Science Foundation of China (10802067)
文摘The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology, low numerical complexity and modest memory requirements. In original LU-SGS scheme, the implicit system matrix is constructed based on the splitting of convective flux Jacobian according to its spectral radius. Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system matrix, it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed. To overcome this shortcoming, an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper. The hybrid way is that: on the cell faces having small contravariant velocity or transonic contravariant velocity, the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix, while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix. To investigate the convergence performance of the improved LU-SGS scheme, 2D and 3D turbulent flows around the NACA0012 airfoil, RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes. The nu- merical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.10771134).
文摘In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.