A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital mod...A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital module and can be fetched conveniently by an astronaut during space walk.The solid lubricating material experiment device needs to be locked reliably in a vibrating and impacting environment during the launch phase,and should meet the requirement that it can be unlocked and fetched reliably by the astronaut wearing an extravehicular spacesuit via simple operations in orbit in an environment of high and low temperature.As for the device we developed,the environmental characteristic of the mission was analyzed,the mechanical analysis and thermal analysis were carried out,and then a mechanism with functions of mechanical locking,structural self-locking and manual unlocking was designed.The device was verified by a sequence of experiments and was fetched by the astronaut during the flight of the Shenzhou-7 Spaceship.展开更多
<strong>Background:</strong> A large percentage of deaths in an epidemic or pandemic can be due to overshoot of population (herd) immunity, either from the initial peak or from planned or unplanned exit fr...<strong>Background:</strong> A large percentage of deaths in an epidemic or pandemic can be due to overshoot of population (herd) immunity, either from the initial peak or from planned or unplanned exit from lockdown or social distancing conditions. <strong>Objectives:</strong> We study partial unlock or reopening interaction with seasonal effects in a managed epidemic to quantify overshoot effects on small and large unlock steps and discover robust strategies for reducing overshoot. <strong>Methods:</strong> We simulate partial unlock of social distancing for epidemics over a range of replication factor, immunity duration and seasonality factor for strategies targeting immunity thresholds using overshoot optimization. <strong>Results:</strong> Seasonality change must be taken into account as one of the steps in an easing sequence, and a two-step unlock, including seasonal effects, minimizes overshoot and deaths. It may cause undershoot, which causes rebounds and assists survival of the pathogen. <strong>Conclusions:</strong> Partial easing levels, even low levels for economic relief while waiting on a vaccine, have population immunity thresholds based on the reduced replication rates and may experience overshoot as well. We further find a two-step strategy remains highly sensitive to variations in case ratio, replication factor, seasonality and timing. We demonstrate a three or more step strategy is more robust, and conclude that the best possible approach minimizes deaths under a range of likely actual conditions which include public response.展开更多
文摘A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital module and can be fetched conveniently by an astronaut during space walk.The solid lubricating material experiment device needs to be locked reliably in a vibrating and impacting environment during the launch phase,and should meet the requirement that it can be unlocked and fetched reliably by the astronaut wearing an extravehicular spacesuit via simple operations in orbit in an environment of high and low temperature.As for the device we developed,the environmental characteristic of the mission was analyzed,the mechanical analysis and thermal analysis were carried out,and then a mechanism with functions of mechanical locking,structural self-locking and manual unlocking was designed.The device was verified by a sequence of experiments and was fetched by the astronaut during the flight of the Shenzhou-7 Spaceship.
文摘<strong>Background:</strong> A large percentage of deaths in an epidemic or pandemic can be due to overshoot of population (herd) immunity, either from the initial peak or from planned or unplanned exit from lockdown or social distancing conditions. <strong>Objectives:</strong> We study partial unlock or reopening interaction with seasonal effects in a managed epidemic to quantify overshoot effects on small and large unlock steps and discover robust strategies for reducing overshoot. <strong>Methods:</strong> We simulate partial unlock of social distancing for epidemics over a range of replication factor, immunity duration and seasonality factor for strategies targeting immunity thresholds using overshoot optimization. <strong>Results:</strong> Seasonality change must be taken into account as one of the steps in an easing sequence, and a two-step unlock, including seasonal effects, minimizes overshoot and deaths. It may cause undershoot, which causes rebounds and assists survival of the pathogen. <strong>Conclusions:</strong> Partial easing levels, even low levels for economic relief while waiting on a vaccine, have population immunity thresholds based on the reduced replication rates and may experience overshoot as well. We further find a two-step strategy remains highly sensitive to variations in case ratio, replication factor, seasonality and timing. We demonstrate a three or more step strategy is more robust, and conclude that the best possible approach minimizes deaths under a range of likely actual conditions which include public response.