Both the adsorption/dissociation of water molecules and hydrogen intermediate(H*)are the major limitations to hydrogen evolution reaction(HER).Herein,the modulation of electronic structure and geometric configuration ...Both the adsorption/dissociation of water molecules and hydrogen intermediate(H*)are the major limitations to hydrogen evolution reaction(HER).Herein,the modulation of electronic structure and geometric configuration are combined to design onedimensional electrocatalyst with outstanding HER activity in a wide pH range.The catalyst was composed of molybdenum trioxide doped molybdenum nickel alloy supported by copper nanowires(MoO_(3)-MoNi_(4)@Cu NWs).As revealed by the experimental characterizations and theoretical calculations,Cu NWs act as the electron donator to MoNi4,resulting in up shift of the d-band center in MoNi4,thus expediting H_(2)O adsorption and dissociation.Moreover,the introduction of amorphous MoO_(3) sets up a unique geometric configuration on MoNi4 for the accelerated H*transfer via hydrogen-bond and hydrogen spillover.This work provides a synergetic route for constructing HER freeway and promotes further investigations on more versatile electrocatalysis involving H_(2)O or H*.展开更多
基金国家社科基金青年项目"形式语义学与语义地图理论双重视角下的汉语量化现象研究"(16CYY001)香港研究资助局GRF项目"Cross-linguistic investigation into universal quantification and other related notions and their semantic map"(CUHK11601315)北京语言大学形式语言学发展研究基金(项目号451149102)的支持
基金the National Natural Science Foundation of China(No.22101300)the Shandong Natural Science Foundation(Nos.ZR2020ME053,ZR2020QB027,and ZR2022ME105)+2 种基金State Key Laboratory of Enhanced Oil Recovery of Open Fund Funded Project(No.2022-KFKT-28)Major Special Projects of China National Petroleum Corporation(No.2021ZZ01-05)the Fundamental Research Funds for the Central Universities(Nos.22CX03010A,20CX06007A,and 22CX01002A-1).
文摘Both the adsorption/dissociation of water molecules and hydrogen intermediate(H*)are the major limitations to hydrogen evolution reaction(HER).Herein,the modulation of electronic structure and geometric configuration are combined to design onedimensional electrocatalyst with outstanding HER activity in a wide pH range.The catalyst was composed of molybdenum trioxide doped molybdenum nickel alloy supported by copper nanowires(MoO_(3)-MoNi_(4)@Cu NWs).As revealed by the experimental characterizations and theoretical calculations,Cu NWs act as the electron donator to MoNi4,resulting in up shift of the d-band center in MoNi4,thus expediting H_(2)O adsorption and dissociation.Moreover,the introduction of amorphous MoO_(3) sets up a unique geometric configuration on MoNi4 for the accelerated H*transfer via hydrogen-bond and hydrogen spillover.This work provides a synergetic route for constructing HER freeway and promotes further investigations on more versatile electrocatalysis involving H_(2)O or H*.