This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detecti...This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detection metric is deduced. The norm is the inherent interference of the time-varying channel, so it can be used as criterion to evaluate the performance of the mapping schemes. The simulation results agree with the analytic conclusion.展开更多
A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non...A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non-unitary space-time code into unitary space-time code, By exploiting the desired structure of the proposed code, a grouped generalized likelihood ratio test decoding algorithm is presented to overcome the high complexity of the optimal algorithm, Simulation results show that the proposed code possesses high spectrum efficiency in contrast to the unitary space-time code despite slight loss in the SNR, and besides, the proposed grouped decoding algorithm provides good tradeoff between performance and complexity,展开更多
文摘This paper proposed four types of differential modulation to map the unitary code into the orthogonal frequency division multiplexing(OFDM) signal. The time-varying channel model is established and the norm of detection metric is deduced. The norm is the inherent interference of the time-varying channel, so it can be used as criterion to evaluate the performance of the mapping schemes. The simulation results agree with the analytic conclusion.
基金Supported by the National Natural Science Foundation of China (Grant No. 60372055)the National Doctoral Foundation of China (Grant No. 20030698027)
文摘A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non-unitary space-time code into unitary space-time code, By exploiting the desired structure of the proposed code, a grouped generalized likelihood ratio test decoding algorithm is presented to overcome the high complexity of the optimal algorithm, Simulation results show that the proposed code possesses high spectrum efficiency in contrast to the unitary space-time code despite slight loss in the SNR, and besides, the proposed grouped decoding algorithm provides good tradeoff between performance and complexity,