Non-uniform rational B-spline (NURBS) curves and surfaces are becoming increasingly widespread. The author have explored G^1 continuity condition between adjacent NURBS surface patches along common cubic boundary curv...Non-uniform rational B-spline (NURBS) curves and surfaces are becoming increasingly widespread. The author have explored G^1 continuity condition between adjacent NURBS surface patches along common cubic boundary curve. On the basis of the research performed, this paper presents a G^2 continuity condition between adjacent NURBS patches along common cubic boundary curve and deduces a specific algorithm for contro1 points and weights of NURBS patch. For making another NURBS patch and one given NURBS patch to attain G^2, according to algorithm condition, one can adjust another patch control points and weights. It is much more convenient for engineers to apply.展开更多
文摘Non-uniform rational B-spline (NURBS) curves and surfaces are becoming increasingly widespread. The author have explored G^1 continuity condition between adjacent NURBS surface patches along common cubic boundary curve. On the basis of the research performed, this paper presents a G^2 continuity condition between adjacent NURBS patches along common cubic boundary curve and deduces a specific algorithm for contro1 points and weights of NURBS patch. For making another NURBS patch and one given NURBS patch to attain G^2, according to algorithm condition, one can adjust another patch control points and weights. It is much more convenient for engineers to apply.