Solar-blind deep-ultraviolet(DUV)photodetectors based on Ga_(2)O_(3)have attracted great attention due to their potential applications for many military and civil purposes.However,the development of device integration...Solar-blind deep-ultraviolet(DUV)photodetectors based on Ga_(2)O_(3)have attracted great attention due to their potential applications for many military and civil purposes.However,the development of device integration for optoelectronic system applications remains a huge challenge.Herein,we report a facile method for patterned-growth of high-qualityβ-Ga_(2)O_(3)thin films,which are assembled into a photodetectors array comprising 8×8 device units.A representative detector exhibits outstanding photoresponse performance,in terms of an ultra-low dark current of 0.62 pA,a large Ilight/Idark ratio exceeding 10^(4),a high responsivity of 0.72 A W^(-1) and a decent specific detectivity of 4.18×10^(11)Jones,upon 265 nm DUV illumination.What is more,the DUV/visible(250/400 nm)rejection ratio is as high as 10^(3) with a sharp response cut-off wave length at 280 nm.Further optoelectronic analysis reveals that the photodetectors array has good uniformity and repeatability,endowing it the capability to serve as a reliable DUV light image sensor with a decent spatial resolution.These results suggest that the proposed technique offers an effective avenue for patterned growth ofβ-Ga_(2)O_(3)thin films for multifunctional DUV optoelectronic applications.展开更多
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a...The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting wi...Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting window. In this paper, high performance JGS-1 (type name of glass) ultraviolet quartz glass is used as the sensor detecting window material and the ultraviolet transmission characteristics of the glass is studied. A new method with the smart fire detecting module to test the ultraviolet transmission parameter of quartz glass is demonstrated. The comparison results of UV spectrometer and this new method manifest that JGS-1 quartz glass has good ultraviolet transmission character and the new test method with fire detecting module is direct and feasible.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51902078,62074048)the Fundamental Research Funds for the Central Universities(PA2020GDKC0014,JZ2020HGTB0051,JZ2018HGXC0001)the Anhui Provincial Natural Science Foundation(2008085MF205)。
文摘Solar-blind deep-ultraviolet(DUV)photodetectors based on Ga_(2)O_(3)have attracted great attention due to their potential applications for many military and civil purposes.However,the development of device integration for optoelectronic system applications remains a huge challenge.Herein,we report a facile method for patterned-growth of high-qualityβ-Ga_(2)O_(3)thin films,which are assembled into a photodetectors array comprising 8×8 device units.A representative detector exhibits outstanding photoresponse performance,in terms of an ultra-low dark current of 0.62 pA,a large Ilight/Idark ratio exceeding 10^(4),a high responsivity of 0.72 A W^(-1) and a decent specific detectivity of 4.18×10^(11)Jones,upon 265 nm DUV illumination.What is more,the DUV/visible(250/400 nm)rejection ratio is as high as 10^(3) with a sharp response cut-off wave length at 280 nm.Further optoelectronic analysis reveals that the photodetectors array has good uniformity and repeatability,endowing it the capability to serve as a reliable DUV light image sensor with a decent spatial resolution.These results suggest that the proposed technique offers an effective avenue for patterned growth ofβ-Ga_(2)O_(3)thin films for multifunctional DUV optoelectronic applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018)the Tianjin Key Research Program of Application Foundation and Advanced Technology,China (Grant No. 11JCZDJC15300)
文摘The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
基金Supported by the National Nature Science Foundation of China (No. 60572007) and the Ministry of Education Program of China (No.20040614004)
文摘Ultraviolet (UV) fire detector is used to detect fire according to the ultraviolet radiation of the flame. High detecting sensitivity of the sensor requires high ultraviolet transmission property of the detecting window. In this paper, high performance JGS-1 (type name of glass) ultraviolet quartz glass is used as the sensor detecting window material and the ultraviolet transmission characteristics of the glass is studied. A new method with the smart fire detecting module to test the ultraviolet transmission parameter of quartz glass is demonstrated. The comparison results of UV spectrometer and this new method manifest that JGS-1 quartz glass has good ultraviolet transmission character and the new test method with fire detecting module is direct and feasible.