ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere, Nd-YAG laser with wavelength of 1 064 nm was used as laser source. XRD and FESEM microscopy were applied...ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere, Nd-YAG laser with wavelength of 1 064 nm was used as laser source. XRD and FESEM microscopy were applied to characterize the structure and surface morphology of the deposited ZnO films. The optical properties of the ZnO thin films were characterized by photoluminescence. The UV and deep level (yellow-green) light were observed from the films. The UV light is the intrinsic property and deep level light is attributed to the existence of antisite defects (OZn). The intensity of UV and deep level light depends strongly on the surface morphology and is explained by the surface roughness of ZnO film. A strongly UV emission can be obtained from ZnO film with surface roughness in nanometer range.展开更多
The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, an...The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at - 1260 cm^-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples.The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer(C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3(BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.展开更多
A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactio...A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactions of Zn(NO_3)_2·6H_2O with phenanthroine, UO_2(NO_3)_2·6H_2O and benzene-1,4-dicarboxylate. The complex was structurally characterized by FT-IR spectroscopy, powder XRD and X-ray single-crystal diffraction. Crystal data for 1: monoclinic, space group Cc with M_r = 1522.19, a = 14.9385(10), b = 20.4922(13), c = 15.9728(10) ?, β = 100.1240(10)°, V = 4813.5(5) ?~3, Z = 4, D_c = 2.100 g?cm^(–3), μ = 7.293 mm^(–1), F(000) = 2872, the final R = 0.0224 and w R= 0.0677 for 6522 observed reflections with I 〉 2σ(I). Hydrogen bonds and π-π stacking interactions contribute to the structural extension and stabilization. Experimental band gap of about 3.57 e V indicates its broad gap semiconductor nature. UV-Vis spectra and solid-state luminescence were discussed in detail. The compound exhibits photocatalytic activities for the degradation of rhodamine B.展开更多
文摘ZnO thin films on Si(111) substrate were deposited by laser ablation of Zn target in oxygen reactive atmosphere, Nd-YAG laser with wavelength of 1 064 nm was used as laser source. XRD and FESEM microscopy were applied to characterize the structure and surface morphology of the deposited ZnO films. The optical properties of the ZnO thin films were characterized by photoluminescence. The UV and deep level (yellow-green) light were observed from the films. The UV light is the intrinsic property and deep level light is attributed to the existence of antisite defects (OZn). The intensity of UV and deep level light depends strongly on the surface morphology and is explained by the surface roughness of ZnO film. A strongly UV emission can be obtained from ZnO film with surface roughness in nanometer range.
文摘The Ce-Co-doped BiFeO3 multiferroic, Bi(1-x)Ce)xFe(1-x)CoxO3(x = 0.00, 0.01, 0.03, and 0.05), has been prepared by a sol-gel auto-combustion method and analyzed through Raman spectroscopy, photoluminescence, and UV-visible spectroscopy. We have observed an anomalous intensity of the second-order Raman mode at - 1260 cm^-1 in pure BFO and suppressed intensity in doped samples, which indicates the presence of spin two-phonon coupling in these samples.The photoluminescence spectra show reduction in the intensity of emission with the increasing dopant concentration, which indicates the high charge separation efficiency. A sharp absorption with three charge transfer(C-T) and two d-d transitions are shown by UV-visible spectra in the visible region. The band gap of BiFeO3(BFO) is decreasing with increasing dopant concentrations and the materials are suitable for photovoltaic applications.
基金Financial supports received from the scientific research foundation of Sanming University(No.B201406/Q)Education Scientific Research Project of Fujian Province(No.JA15480)
文摘A new uranium(Ⅵ)-polycarboxylate framework with honeycomb(6,3) nets {[Zn(phen)_2(H_2O)_2][(UO_2)_2(BDC)_3]·2H_2O}n(1, BDC = benzene-1,4-dicarboxylate) was hydrotherrmally synthesized by the reactions of Zn(NO_3)_2·6H_2O with phenanthroine, UO_2(NO_3)_2·6H_2O and benzene-1,4-dicarboxylate. The complex was structurally characterized by FT-IR spectroscopy, powder XRD and X-ray single-crystal diffraction. Crystal data for 1: monoclinic, space group Cc with M_r = 1522.19, a = 14.9385(10), b = 20.4922(13), c = 15.9728(10) ?, β = 100.1240(10)°, V = 4813.5(5) ?~3, Z = 4, D_c = 2.100 g?cm^(–3), μ = 7.293 mm^(–1), F(000) = 2872, the final R = 0.0224 and w R= 0.0677 for 6522 observed reflections with I 〉 2σ(I). Hydrogen bonds and π-π stacking interactions contribute to the structural extension and stabilization. Experimental band gap of about 3.57 e V indicates its broad gap semiconductor nature. UV-Vis spectra and solid-state luminescence were discussed in detail. The compound exhibits photocatalytic activities for the degradation of rhodamine B.