以英国 Sonardyne公司的超短基线 (Ultra- Short Base L ine)为研究对象 ,研究了该系统在各种情况下的重复定位精度 ,以及将该系统应用于水下机器人动力定位的可能性 .实验结果表明 ,即使存在姿态偏差 ,如果通过姿态传感器进行动态补偿 ...以英国 Sonardyne公司的超短基线 (Ultra- Short Base L ine)为研究对象 ,研究了该系统在各种情况下的重复定位精度 ,以及将该系统应用于水下机器人动力定位的可能性 .实验结果表明 ,即使存在姿态偏差 ,如果通过姿态传感器进行动态补偿 ,该系统仍能获得很好的重复定位精度 。展开更多
超短基线(u ltra short base line,USBL)声学定位系统的换能器安装是具有一定方向性的,但是,在安装过程中,不能保证换能器方向与船艏方向严格一致,必然存在不可忽视的系统误差,影响了测量精度;因此,必须通过校准消除系统误差。本文应用...超短基线(u ltra short base line,USBL)声学定位系统的换能器安装是具有一定方向性的,但是,在安装过程中,不能保证换能器方向与船艏方向严格一致,必然存在不可忽视的系统误差,影响了测量精度;因此,必须通过校准消除系统误差。本文应用高精度RTK GPS实现了换能器安装方向的校准,取得了满意的结果。展开更多
China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench...China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions.展开更多
文摘以英国 Sonardyne公司的超短基线 (Ultra- Short Base L ine)为研究对象 ,研究了该系统在各种情况下的重复定位精度 ,以及将该系统应用于水下机器人动力定位的可能性 .实验结果表明 ,即使存在姿态偏差 ,如果通过姿态传感器进行动态补偿 ,该系统仍能获得很好的重复定位精度 。
文摘超短基线(u ltra short base line,USBL)声学定位系统的换能器安装是具有一定方向性的,但是,在安装过程中,不能保证换能器方向与船艏方向严格一致,必然存在不可忽视的系统误差,影响了测量精度;因此,必须通过校准消除系统误差。本文应用高精度RTK GPS实现了换能器安装方向的校准,取得了满意的结果。
基金financially supported the National Natural Science Foundation of China(Grant No.61703118)the National Key Research and Development Program of China(Grant No.2016YFB0501703)+1 种基金Taishan Scholars Climbing Program of Shandong(Grant No.TSPD20161007)International Marine Resources Investigation and Development Program of China Ocean Mineral Resources R&D Association and the Strategic Precursor Program of Chinese Academy of Sciences
文摘China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions.