作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与...作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。展开更多
叶绿素相对含量(soil and plant analyzer development,SPAD)是评价水稻健康状况的重要农学参数,为了解决传统监测方法工作量大,效率低的问题,以东北粳稻为研究对象,采用不同施肥处理开展小区试验,利用无人机低空遥感技术分别获取水稻...叶绿素相对含量(soil and plant analyzer development,SPAD)是评价水稻健康状况的重要农学参数,为了解决传统监测方法工作量大,效率低的问题,以东北粳稻为研究对象,采用不同施肥处理开展小区试验,利用无人机低空遥感技术分别获取水稻分蘖期、拔节孕穗期、抽穗灌浆期水稻冠层高清数码影像,同时利用叶绿素仪测量水稻冠层SPAD值,并对无人机高清数码影像反演SPAD的可行性及方法进行研究。结合k-means聚类和阈值分割的方法去除背景提取出水稻叶片的RGB值,构建出R、G、B及G/R、G/B、B/R、R-B、G-R、NRI、NGI、NBI共11种颜色参数,并分别用11种参数和水稻叶片SPAD做相关性分析,分析结果表明NRI、B/R、R-B 3种参数和SPAD值高度相关。分别采用一元线性回归分析法和BP神经网络法对3种参数和SPAD的关系进行建模并对建模精度进行分析。结果表明:无人机高清影像反演SPAD是可行的,其中一元线性回归分析中,NRI和SPAD的建模精度高于B/R和R-B,均方根误差(RMSE)为1.51;基于NRI、B/R和R-B的多特征输入的BP神经网络预测粳稻SPAD的RMSE为1.354,相比基于NRI的一元线性回归分析模型精度提升11%,BP模型能较好地对东北粳稻的SPAD进行反演,能为无人机低空遥感反演粳稻SPAD提供理论依据和实现方法。展开更多
文摘作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。