Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing ...Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms are important for filling data gaps and supplementing the capabilities of crewed/manned aircraft and satellite remote sensing systems. Here, we refer to this growing remote sensing ini- tiative as drone remote sensing and explain its unique advantages in forestry research and practices. Furthermore, we summarize the various approaches of drone remote sensing to surveying forests, mapping canopy gaps, mea- suring forest canopy height, tracking forest wildfires, and supporting intensive forest management. The benefits of drone remote sensing include low material and operational costs, flexible control of spatial and temporal resolution, high-intensity data collection, and the absence of risk to crews. The current forestry applications of drone remote sensing are still at an experimental stage, but they are expected to expand rapidly. To better guide the development of drone remote sensing for sustainable forestry, it isimportant to systematically and continuously conduct comparative studies to determine the appropriate drone remote sensing technologies for various forest conditions and/or forestry applications.展开更多
The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation as...The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.展开更多
This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity...This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.展开更多
目的观察益气固表方(协定处方)治疗表虚不固型慢性自发性荨麻疹的临床疗效、复发率及安全性。方法将164例表虚不固型慢性自发性荨麻疹患者随机分为治疗组(84例)和对照组(80例),治疗组给予益气固表方(协定处方)口服,300 m L 2次/d;对照...目的观察益气固表方(协定处方)治疗表虚不固型慢性自发性荨麻疹的临床疗效、复发率及安全性。方法将164例表虚不固型慢性自发性荨麻疹患者随机分为治疗组(84例)和对照组(80例),治疗组给予益气固表方(协定处方)口服,300 m L 2次/d;对照组给予盐酸左西替利嗪片口服,5mg 1次/d。4周为1个疗程,治疗2个疗程,观察1、2个疗程末2组患者荨麻疹活动度评分、临床疗效、复发率、安全性并进行比较。结果治疗4周末和8周末,2组UAS评分较前一时点显著降低。治疗8周末,2组临床疗效(P=0.030)、复发率比较(P=0.037)、安全性比较(P=0.029),差异均有统计学意义。结论益气固表方(协定处方)治疗表虚不固型慢性自发性荨麻疹疗效确切,安全性高,复发率低。展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
文摘Drones of various shapes, sizes, and functionalities have emerged over the past few decades, and their civilian applications are becoming increasingly appealing. Flexible, low-cost, and high-resolution remote sensing systems that use drones as platforms are important for filling data gaps and supplementing the capabilities of crewed/manned aircraft and satellite remote sensing systems. Here, we refer to this growing remote sensing ini- tiative as drone remote sensing and explain its unique advantages in forestry research and practices. Furthermore, we summarize the various approaches of drone remote sensing to surveying forests, mapping canopy gaps, mea- suring forest canopy height, tracking forest wildfires, and supporting intensive forest management. The benefits of drone remote sensing include low material and operational costs, flexible control of spatial and temporal resolution, high-intensity data collection, and the absence of risk to crews. The current forestry applications of drone remote sensing are still at an experimental stage, but they are expected to expand rapidly. To better guide the development of drone remote sensing for sustainable forestry, it isimportant to systematically and continuously conduct comparative studies to determine the appropriate drone remote sensing technologies for various forest conditions and/or forestry applications.
基金the USDA National Institute of Food and Agriculture McIntire Stennis project(IND011523MS).
文摘The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC) for the funding of the Canada Research Chair in Aircraft Modeling and Simulation Technologiesthe Canada Foundation of Innovation (CFI), the Ministerèdu Développement économique, de l’Innovation et de l’Exportation (MDEIE) and Hydra Technologies for the acquisition of the UAS-S4 using the Leaders Opportunity Funds+2 种基金the financial support obtained in the framework of the CRIAQ MDO-505 projectthe implication of our industrial partners Bombardier Aerospace and Thales CanadaNSERC for their support
文摘This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.
文摘目的观察益气固表方(协定处方)治疗表虚不固型慢性自发性荨麻疹的临床疗效、复发率及安全性。方法将164例表虚不固型慢性自发性荨麻疹患者随机分为治疗组(84例)和对照组(80例),治疗组给予益气固表方(协定处方)口服,300 m L 2次/d;对照组给予盐酸左西替利嗪片口服,5mg 1次/d。4周为1个疗程,治疗2个疗程,观察1、2个疗程末2组患者荨麻疹活动度评分、临床疗效、复发率、安全性并进行比较。结果治疗4周末和8周末,2组UAS评分较前一时点显著降低。治疗8周末,2组临床疗效(P=0.030)、复发率比较(P=0.037)、安全性比较(P=0.029),差异均有统计学意义。结论益气固表方(协定处方)治疗表虚不固型慢性自发性荨麻疹疗效确切,安全性高,复发率低。
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.