Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This p...Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.展开更多
文摘Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.