The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolu...The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.展开更多
In August 2009,Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan.Unfortunately,this resulted in a catastrophic landslide in Hsiaolin Village,Taiwan....In August 2009,Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan.Unfortunately,this resulted in a catastrophic landslide in Hsiaolin Village,Taiwan.Meanwhile,large amounts of landslides were formed in the Jiaopu Stream watershed near the southeast part of the Hsiaolin Village.The Hsiaolin Village access road(Provincial Highway No.21 and Bridge No.8) was completely destroyed by the landslide and consequent debris flow.The major scope of this study is to apply a debris flow model to simulate the disaster caused by the debris flow that occurred in the Jiaopu Stream during Typhoon Morakot.According to the interviews with local residents,this study applied the destruction time of Bridge No.8 and Chen's house to verify the numerical debris flow model.By the spatial rainfall distributions information,the numerical simulations of the debris flow are conducted in two stages.In the first stage(before the landslide-dam failure),the elevation of the debris flow and the corresponding potential damages toward residential properties were investigated.In the second stage(after the landslidedam failure),comparisons of simulation results between the longitudinal and cross profiles of the Jiaopu Stream were performed using topographic maps and satellite imagery.In summary,applications of the adopted numerical debris flow model have shown positive impact on supporting better understanding of the occurrence and movement of debris flow processes.展开更多
China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order t...China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.展开更多
After the Morakot disaster in 2009, the affected indigenous tribes suffered from the government’s use of permanent housing as a single reconstruction option, which forced the victims to leave their original land for ...After the Morakot disaster in 2009, the affected indigenous tribes suffered from the government’s use of permanent housing as a single reconstruction option, which forced the victims to leave their original land for a new life in a different reconstruction mode. The purpose of this study is to explore the ways adopted by tribal residents to maintain their own culture and tribal life in the process of disaster, post disaster reconstruction and post disaster adjustment. Veoveoana Village in Taiwan is an indigenous tribe that relocated after a disaster and was reconstructed and developed through tourism development. This study performed the research by participant observation and in-depth interviews on Veoveoana Village. The analytical results showed that: 1) development of the tourism industry can result in cultural reconstruction of the post-disaster tribe and maintain the people’s incomes;2) although the government constantly assists with the rehabilitation of tribal industry by various policies, the implementation cannot effectively continue and the outcome is insignificant;3) due to the gap between permanent prefabricated housing and original tribal cultural features, the residential rate is not high. According to the research findings, it is suggested that, in the process of post-disaster reconstruction, the government and private non-profit organizations should respect the intention of the majority of the indigenous people. In addition, it should cultivate professional manpower for the subsidized projects.展开更多
The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Centra...The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Central Mountain Range(CMR), while the outer wind had flowed around the northern tip of the CMR and met the southwesterly monsoon to result in a strong confluent flow over the southern Taiwan Strait. When the confluent flow was blocked by the southern CMR, a secondary center(SC) without a warm core formed over southwestern Taiwan. During the northward movement of the SC along the west slope of the CMR, the warm air produced within the wake flow over the northwestern CMR was continuously advected into the SC, contributing to the generation of a warm core inside the SC. Consequently, a well-defined SC with a warm core, closed circulation and almost symmetric structure was produced over central western Taiwan, and then it coupled with Morakot's mid-level center after crossing the CMR to reestablish a new and vertically stacked typhoon. Therefore, the SC inside Morakot was initially generated by a dynamic interaction among the TC's cyclonic wind, southwesterly wind and orographic effects of the CMR, while the thermodynamic process associated with the downslope adiabatic warming effect documented by previous studies supported its development to be a well-defined SC. In summary, the evolution of the SC in this study is not in contradiction with previous studies, but just a complement, especially in the initial formation stage.展开更多
基金primarily supported by the National Fundamental Research 973 Program of China(Grant Nos.2015CB452801 and 2013CB430100)the National Natural Science Foundation of China(Grant No.41105035)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.20620140054 and 20620140347)supported by NOAA’s Hurricane Forecast and Improvement Project(HFIP),Grant Nos.NA14NWS4680028 and NASA Grant NNX14AM69G
文摘The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.
基金the National Science Council in Taiwan(NSC 101-2218-E-006-001 and NSC 101-2625-M-006-001)the Soil and Water Conservation Bureau Council of Agriculture,Executive Yuan in Taiwan
文摘In August 2009,Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan.Unfortunately,this resulted in a catastrophic landslide in Hsiaolin Village,Taiwan.Meanwhile,large amounts of landslides were formed in the Jiaopu Stream watershed near the southeast part of the Hsiaolin Village.The Hsiaolin Village access road(Provincial Highway No.21 and Bridge No.8) was completely destroyed by the landslide and consequent debris flow.The major scope of this study is to apply a debris flow model to simulate the disaster caused by the debris flow that occurred in the Jiaopu Stream during Typhoon Morakot.According to the interviews with local residents,this study applied the destruction time of Bridge No.8 and Chen's house to verify the numerical debris flow model.By the spatial rainfall distributions information,the numerical simulations of the debris flow are conducted in two stages.In the first stage(before the landslide-dam failure),the elevation of the debris flow and the corresponding potential damages toward residential properties were investigated.In the second stage(after the landslidedam failure),comparisons of simulation results between the longitudinal and cross profiles of the Jiaopu Stream were performed using topographic maps and satellite imagery.In summary,applications of the adopted numerical debris flow model have shown positive impact on supporting better understanding of the occurrence and movement of debris flow processes.
基金EXPO special Project(10dz0581300)Natural Science Fund from Science and Technology Commission of Shanghai Municipality(09ZR1428700)National Department(Meteorology)Public Benefit Research Foundation(GYHY200906002)
文摘China's new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.
文摘After the Morakot disaster in 2009, the affected indigenous tribes suffered from the government’s use of permanent housing as a single reconstruction option, which forced the victims to leave their original land for a new life in a different reconstruction mode. The purpose of this study is to explore the ways adopted by tribal residents to maintain their own culture and tribal life in the process of disaster, post disaster reconstruction and post disaster adjustment. Veoveoana Village in Taiwan is an indigenous tribe that relocated after a disaster and was reconstructed and developed through tourism development. This study performed the research by participant observation and in-depth interviews on Veoveoana Village. The analytical results showed that: 1) development of the tourism industry can result in cultural reconstruction of the post-disaster tribe and maintain the people’s incomes;2) although the government constantly assists with the rehabilitation of tribal industry by various policies, the implementation cannot effectively continue and the outcome is insignificant;3) due to the gap between permanent prefabricated housing and original tribal cultural features, the residential rate is not high. According to the research findings, it is suggested that, in the process of post-disaster reconstruction, the government and private non-profit organizations should respect the intention of the majority of the indigenous people. In addition, it should cultivate professional manpower for the subsidized projects.
基金jointly supported by the Key Program for International S&T Cooperation Projects of China(Grant NO.2017YFE0107700)the National Natural Science Foundation of China(Grant No.41405051,41475059,41475060,41675044 and 41775064)the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service
文摘The structural evolution of Typhoon Morakot(2009) during its passage across Taiwan was investigated with the WRF model. When Morakot approached eastern Taiwan, the low-level center was gradually filled by the Central Mountain Range(CMR), while the outer wind had flowed around the northern tip of the CMR and met the southwesterly monsoon to result in a strong confluent flow over the southern Taiwan Strait. When the confluent flow was blocked by the southern CMR, a secondary center(SC) without a warm core formed over southwestern Taiwan. During the northward movement of the SC along the west slope of the CMR, the warm air produced within the wake flow over the northwestern CMR was continuously advected into the SC, contributing to the generation of a warm core inside the SC. Consequently, a well-defined SC with a warm core, closed circulation and almost symmetric structure was produced over central western Taiwan, and then it coupled with Morakot's mid-level center after crossing the CMR to reestablish a new and vertically stacked typhoon. Therefore, the SC inside Morakot was initially generated by a dynamic interaction among the TC's cyclonic wind, southwesterly wind and orographic effects of the CMR, while the thermodynamic process associated with the downslope adiabatic warming effect documented by previous studies supported its development to be a well-defined SC. In summary, the evolution of the SC in this study is not in contradiction with previous studies, but just a complement, especially in the initial formation stage.