Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot s...Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected.展开更多
It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resu...It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO_(2) powders (TiO_(2)-1100 ℃), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO_(2)-1100 ℃ to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO_(2)-1100 ℃ also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO_(2), micron-sized TiO_(2) has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO_(3) and TiO_(2)-1100 ℃ prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m^(−1)·K^(−1). All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with a small grain size is a potential material for thermal protection.展开更多
基金the following organizations:the National Natural Science Foundation of China(Nos.51975305,51905289)the Major Research Project of Shandong Province(Nos.2019GGX104040 and2019GSF108236)+2 种基金the Shandong Provincial Natural Science Foundation of China(Nos.ZR2019PEE008)Major Science and Technology Innovation Engineering Projects of Shandong Province(No.2019JZZY020111)Applied Basic Research Youth Project of Qingdao Science and Technology Plan(No.19-6-2-63-cg)。
文摘Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected.
基金financial support from the National Key R&D Program of China(No.2023YFB3711200)the National Natural Science Foundation of China(No.52172072).
文摘It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO_(2) powders (TiO_(2)-1100 ℃), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO_(2)-1100 ℃ to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO_(2)-1100 ℃ also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO_(2), micron-sized TiO_(2) has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO_(3) and TiO_(2)-1100 ℃ prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m^(−1)·K^(−1). All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with a small grain size is a potential material for thermal protection.