The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence...The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.展开更多
Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the sim...Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.展开更多
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p...The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.展开更多
基金Financial support from NSFC(Grant No.41572303,4151001059,41101008)Key Projects in the National Science & Technology Pillar Program(2014BAL05B01)CAS "Light of West China" Program
文摘The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.
基金Financial support from the NSFC-ICIMOD (41661144041)Key Research and Development Program (2017SZ0041)Sichuan Province Science and Technology Support Project (2016SZ0067)
文摘Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.
文摘The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.