Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the ...Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the existence of the very large scale motions(VLSMs) during the stable stage both in the stream velocity and the temperature field at the two heights,whose streamwise scales reach up to 10 times the thickness of the boundary layer.The streamwise velocity and the PM10 concentration display a similar frequency corresponding to the peaks of their energy spectra,which implies that the VLSMs of streamwise flow have a significant role in dust transportation.In contrast,the salient deviations of the PM10 concentration at 47 m from the Gaussian distribution are revealed,which means that 47 m is not in the dust transportation layer,but is a region where the dust transportation layer and the outer flow intersect each other.Analysis demonstrates that the energy spectra of the PM10 concentrations at 16 m and 47 m display the "-1" scaling law feature,which has the same frequency range(0.001-0.1 Hz) as that of the wind velocity.This provides a new paradigm for the existence of the self-similarity scaling region in turbulent flow.展开更多
Magnetic holes at the ion-to-electron kinetic scale(KSMHs)are one of the extremely small intermittent structures generated in turbulent magnetized plasmas.In recent years,the explorations of KSMHs have made substantia...Magnetic holes at the ion-to-electron kinetic scale(KSMHs)are one of the extremely small intermittent structures generated in turbulent magnetized plasmas.In recent years,the explorations of KSMHs have made substantial strides,driven by the ultra-high-precision observational data gathered from the Magnetospheric Multiscale(MMS)mission.This review paper summarizes the up-to-date characteristics of the KSMHs observed in Earth’s turbulent magnetosheath,as well as their potential impacts on space plasma.This review starts by introducing the fundamental properties of the KSMHs,including observational features,particle behaviors,scales,geometries,and distributions in terrestrial space.Researchers have discovered that KSMHs display a quasi-circular electron vortex-like structure attributed to electron diamagnetic drift.These electrons exhibit noticeable non-gyrotropy and undergo acceleration.The occurrence rate of KSMH in the Earth’s magnetosheath is significantly greater than in the solar wind and magnetotail,suggesting the turbulent magnetosheath is a primary source region.Additionally,KSMHs have also been generated in turbulence simulations and successfully reproduced by the kinetic equilibrium models.Furthermore,KSMHs have demonstrated their ability to accelerate electrons by a novel non-adiabatic electron acceleration mechanism,serve as an additional avenue for energy dissipation during magnetic reconnection,and generate diverse wave phenomena,including whistler waves,electrostatic solitary waves,and electron cyclotron waves in space plasma.These results highlight the magnetic hole’s impact such as wave-particle interaction,energy cascade/dissipation,and particle acceleration/heating in space plasma.We end this paper by summarizing these discoveries,discussing the generation mechanism,similar structures,and observations in the Earth’s magnetotail and solar wind,and presenting a future extension perspective in this active field.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.展开更多
In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is st...In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11232006,11121202,10972164,40830103,and 11072097)the State Key Dvelopment Program for Basic Research of China (Grant No. 2009CB421304)
文摘Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the existence of the very large scale motions(VLSMs) during the stable stage both in the stream velocity and the temperature field at the two heights,whose streamwise scales reach up to 10 times the thickness of the boundary layer.The streamwise velocity and the PM10 concentration display a similar frequency corresponding to the peaks of their energy spectra,which implies that the VLSMs of streamwise flow have a significant role in dust transportation.In contrast,the salient deviations of the PM10 concentration at 47 m from the Gaussian distribution are revealed,which means that 47 m is not in the dust transportation layer,but is a region where the dust transportation layer and the outer flow intersect each other.Analysis demonstrates that the energy spectra of the PM10 concentrations at 16 m and 47 m display the "-1" scaling law feature,which has the same frequency range(0.001-0.1 Hz) as that of the wind velocity.This provides a new paradigm for the existence of the self-similarity scaling region in turbulent flow.
基金supported by the National Natural Science Foundation of China(Grant No.42225405)Shutao YAO was supported by the National Natural Science Foundation of China(Grant No.42104153)+3 种基金the National Natural Science Foundation of Shandong Province(Grant No.ZR2021QD097)the China Postdoctoral Science Foundation(Grant No.2021M701975)supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project(Grant Nos.#517,#555)financial support from the Canadian Space Agency。
文摘Magnetic holes at the ion-to-electron kinetic scale(KSMHs)are one of the extremely small intermittent structures generated in turbulent magnetized plasmas.In recent years,the explorations of KSMHs have made substantial strides,driven by the ultra-high-precision observational data gathered from the Magnetospheric Multiscale(MMS)mission.This review paper summarizes the up-to-date characteristics of the KSMHs observed in Earth’s turbulent magnetosheath,as well as their potential impacts on space plasma.This review starts by introducing the fundamental properties of the KSMHs,including observational features,particle behaviors,scales,geometries,and distributions in terrestrial space.Researchers have discovered that KSMHs display a quasi-circular electron vortex-like structure attributed to electron diamagnetic drift.These electrons exhibit noticeable non-gyrotropy and undergo acceleration.The occurrence rate of KSMH in the Earth’s magnetosheath is significantly greater than in the solar wind and magnetotail,suggesting the turbulent magnetosheath is a primary source region.Additionally,KSMHs have also been generated in turbulence simulations and successfully reproduced by the kinetic equilibrium models.Furthermore,KSMHs have demonstrated their ability to accelerate electrons by a novel non-adiabatic electron acceleration mechanism,serve as an additional avenue for energy dissipation during magnetic reconnection,and generate diverse wave phenomena,including whistler waves,electrostatic solitary waves,and electron cyclotron waves in space plasma.These results highlight the magnetic hole’s impact such as wave-particle interaction,energy cascade/dissipation,and particle acceleration/heating in space plasma.We end this paper by summarizing these discoveries,discussing the generation mechanism,similar structures,and observations in the Earth’s magnetotail and solar wind,and presenting a future extension perspective in this active field.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
基金Supported by the State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Science Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.
基金the National Natural Science Foundation of China (Grant 11772128)the Fundamental Research Funds for the Central Universities (Grants 2017MS022 and 2018ZD09).
文摘In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.