Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were trans...Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos- phate buffer solution (PBS) counterparts (P 〈 0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P 〈 0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.展开更多
Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVa...Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac?, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten vaccinations. Seven patients remained in stable disease (SD) three months after the first vaccination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five patients showed an unexpectedly prolonged survival. The treatment was well tolerated and only minor adverse events were reported. Quality of life did not change during the study period. In four of the seven patients with SD, vaccine-specific T cells were detected by IFNγ EliSpot assays, whereas only one patient with progressive disease (PD) showed vaccine-specific responses. Conclusion: This DC-based vaccine trial has indicated a correlation between vaccine-specific immunity and sustained SD. Furthermore, we observed an unexpectedly prolonged survival in some patients, which may indicate delayed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac? vaccine treatment in patients with progressive NSCLC.展开更多
个性化肿瘤(癌症)疫苗(personalized cancer vaccines,PCVs)包括新抗原癌症(肿瘤)疫苗(neoantigen cancer vaccines,NCVs)和肿瘤裂解物疫苗(tumor lysate vaccines,TLVs)。NCVs以新表位为抗原。新表位是新抗原中可以激活肿瘤特异性T细...个性化肿瘤(癌症)疫苗(personalized cancer vaccines,PCVs)包括新抗原癌症(肿瘤)疫苗(neoantigen cancer vaccines,NCVs)和肿瘤裂解物疫苗(tumor lysate vaccines,TLVs)。NCVs以新表位为抗原。新表位是新抗原中可以激活肿瘤特异性T细胞的免疫活性肽。新抗原是根据肿瘤细胞全基因组测序数据确定的肿瘤细胞特有的突变蛋白。TLVs以肿瘤患者的肿瘤裂解物为抗原。PCVs能激活肿瘤特异性CD4+T细胞和CD8+T细胞,这些T细胞能在肿瘤患者体内抑制、杀伤肿瘤细胞,因而延长肿瘤患者的生存期。为了提高疫苗效力,PCVs必须和佐剂组成一定的剂型。可用于PCVs的佐剂有运载体、纳米颗粒、乳化剂、模式识别受体激动剂、免疫卡点抑制剂和能改变免疫抑制肿瘤微环境的制剂等。展开更多
文摘Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos- phate buffer solution (PBS) counterparts (P 〈 0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P 〈 0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.
文摘Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac?, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten vaccinations. Seven patients remained in stable disease (SD) three months after the first vaccination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five patients showed an unexpectedly prolonged survival. The treatment was well tolerated and only minor adverse events were reported. Quality of life did not change during the study period. In four of the seven patients with SD, vaccine-specific T cells were detected by IFNγ EliSpot assays, whereas only one patient with progressive disease (PD) showed vaccine-specific responses. Conclusion: This DC-based vaccine trial has indicated a correlation between vaccine-specific immunity and sustained SD. Furthermore, we observed an unexpectedly prolonged survival in some patients, which may indicate delayed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac? vaccine treatment in patients with progressive NSCLC.
文摘个性化肿瘤(癌症)疫苗(personalized cancer vaccines,PCVs)包括新抗原癌症(肿瘤)疫苗(neoantigen cancer vaccines,NCVs)和肿瘤裂解物疫苗(tumor lysate vaccines,TLVs)。NCVs以新表位为抗原。新表位是新抗原中可以激活肿瘤特异性T细胞的免疫活性肽。新抗原是根据肿瘤细胞全基因组测序数据确定的肿瘤细胞特有的突变蛋白。TLVs以肿瘤患者的肿瘤裂解物为抗原。PCVs能激活肿瘤特异性CD4+T细胞和CD8+T细胞,这些T细胞能在肿瘤患者体内抑制、杀伤肿瘤细胞,因而延长肿瘤患者的生存期。为了提高疫苗效力,PCVs必须和佐剂组成一定的剂型。可用于PCVs的佐剂有运载体、纳米颗粒、乳化剂、模式识别受体激动剂、免疫卡点抑制剂和能改变免疫抑制肿瘤微环境的制剂等。