There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China...There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China Landfalling Typhoon Experiment) was implemented in July-August 2002. The boundary layer characteristics of the target typhoon Vongfong and the mesoscale structural features of other land-falling typhoons were studied. In addition, typhoon track operational forecasting errors in the last decade have been reduced because the operational monitoring equipment and forecast techniques were improved. Some results from the research program on tropical cvclone landfall, structure and intensity change, inten-sification near coastal waters, interaction between tropical cyclone and mid-latitude circulation, and the interaction among different scales of motion are described in this paper. Four major meteorological scien-tific experiments in China with international cooperation were implemented in 1998: the South China Sea monsoon field experiment (SCSMEX), the Tibetan Plateau field experiment (TIPEX), the Huaihe River basin energy and water cycle experiment (HUBEX), and the South China heavy rain scientific experiment (HUAMEX). Although these field experiments have different scientific objectives, they commonly relate to monsoon activities and they interact with each other. The valuable intensive observation data that were obtained have already been shared internationally. Some new findings have been published recently. Other research work in China, such as the tropical air-sea interaction, tropical atmospheric circulation, and weather systems, are reviewed in this paper as well. Some research results have shown that the rainfall anomalies for different regions in China were closely related to the stages of El Nino events.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.40175019 and 40275018the Key Project of the Ministry of Science and Technology of China under Grant No.2001DIA20026.
文摘There has been much progress in the study of tropical cyclones and tropical meteorology in China in the past few years. A new atmospheric field experiment of tropical cyclone landfall with the acronym of CLATEX (China Landfalling Typhoon Experiment) was implemented in July-August 2002. The boundary layer characteristics of the target typhoon Vongfong and the mesoscale structural features of other land-falling typhoons were studied. In addition, typhoon track operational forecasting errors in the last decade have been reduced because the operational monitoring equipment and forecast techniques were improved. Some results from the research program on tropical cvclone landfall, structure and intensity change, inten-sification near coastal waters, interaction between tropical cyclone and mid-latitude circulation, and the interaction among different scales of motion are described in this paper. Four major meteorological scien-tific experiments in China with international cooperation were implemented in 1998: the South China Sea monsoon field experiment (SCSMEX), the Tibetan Plateau field experiment (TIPEX), the Huaihe River basin energy and water cycle experiment (HUBEX), and the South China heavy rain scientific experiment (HUAMEX). Although these field experiments have different scientific objectives, they commonly relate to monsoon activities and they interact with each other. The valuable intensive observation data that were obtained have already been shared internationally. Some new findings have been published recently. Other research work in China, such as the tropical air-sea interaction, tropical atmospheric circulation, and weather systems, are reviewed in this paper as well. Some research results have shown that the rainfall anomalies for different regions in China were closely related to the stages of El Nino events.