在通用有限元软件ANSYS中建立了220 k V猫头塔有限元模型,分别采用静力和动力方法分析了基础不均匀沉降、倾斜和水平滑移工况的铁塔杆件内力,计算了基础突然变形时输电铁塔结构的动力冲击系数。结果表明,基础变形过程中输电铁塔塔腿斜...在通用有限元软件ANSYS中建立了220 k V猫头塔有限元模型,分别采用静力和动力方法分析了基础不均匀沉降、倾斜和水平滑移工况的铁塔杆件内力,计算了基础突然变形时输电铁塔结构的动力冲击系数。结果表明,基础变形过程中输电铁塔塔腿斜材应力变化幅度最大并最先发生破坏。铁塔杆件轴力峰值发生在基础沉降的初始时刻附近,而阻尼比对峰值影响不大,阻尼比分别为0.01和0.05时,塔腿主材轴力峰值仅相差约3.5%。对于经过地表变形剧烈的采空区输电线路,基础突然变形对输电铁塔结构的动力冲击效应显著。考虑基础变形动力冲击效应后,不均匀沉降工况下塔腿斜材应力比增大50%以上,单侧倾斜和水平滑移工况的塔腿斜材应力增大幅度超过100%。展开更多
Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent ...Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent transmission, and a concave and convex locking arc device, has a large rigid impact. To solve these problems, according to the design requirements for a dryland plug seedling transplanting mechanism, a rotary seedling pick-up mechanism of a planetary gear train with combined non-circular gear transmission of incomplete eccentric circular and noncircular gears was proposed. This has the characteristics of two-times greater fluctuation of the transmission ratio in a cycle, and can achieve a non-uniform continuous drive. Through analysis of the working principle of the seedling pick-up mechanism, its kinematics model was established. The human–computer interaction optimization method and self-developed computer-aided analysis and optimization software were used to obtain a set of parameters that satisfy the operation requirements of the seedling pick-up mechanism. According to the optimized parameters, the structure of the seedling pick-up mechanism was designed, a virtual prototype of the mechanism was created, and a physical prototype was manufactured. A virtual motion simulation of the mechanism was performed, high-speed photographic kinematics tests were conducted, and the kinematic properties of the physical prototype were investigated, whereby the correctness of the theoretical model and the optimized design of the mechanism were verified. Further, laboratory seedling pick-up tests were conducted. The success ratio of seedling pick-up was 93.8% when the seedling pick-up efficiency of the mechanism was 60 plants per minute per row, indicating that the mechanism has a high efficiency and success ratio for seedling pick-up and can be applied to a dryland plug seedling transplanter.展开更多
文摘在通用有限元软件ANSYS中建立了220 k V猫头塔有限元模型,分别采用静力和动力方法分析了基础不均匀沉降、倾斜和水平滑移工况的铁塔杆件内力,计算了基础突然变形时输电铁塔结构的动力冲击系数。结果表明,基础变形过程中输电铁塔塔腿斜材应力变化幅度最大并最先发生破坏。铁塔杆件轴力峰值发生在基础沉降的初始时刻附近,而阻尼比对峰值影响不大,阻尼比分别为0.01和0.05时,塔腿主材轴力峰值仅相差约3.5%。对于经过地表变形剧烈的采空区输电线路,基础突然变形对输电铁塔结构的动力冲击效应显著。考虑基础变形动力冲击效应后,不均匀沉降工况下塔腿斜材应力比增大50%以上,单侧倾斜和水平滑移工况的塔腿斜材应力增大幅度超过100%。
基金Supported by National Key Research and Development Program of China(Project No.2017YFD0700800)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ16E050003)+1 种基金Natural Science Foundation of China(Grant No.51505429)Science Foundation of Zhejiang Sci-Tech University(Grant No.15022011-Y)
文摘Currently, transplanting mechanisms for dryland plug seedlings in China are mainly semiautomatic and have low efficiency. The rotary seedling pick-up mechanism with a planetary gear train for non-uniform intermittent transmission, and a concave and convex locking arc device, has a large rigid impact. To solve these problems, according to the design requirements for a dryland plug seedling transplanting mechanism, a rotary seedling pick-up mechanism of a planetary gear train with combined non-circular gear transmission of incomplete eccentric circular and noncircular gears was proposed. This has the characteristics of two-times greater fluctuation of the transmission ratio in a cycle, and can achieve a non-uniform continuous drive. Through analysis of the working principle of the seedling pick-up mechanism, its kinematics model was established. The human–computer interaction optimization method and self-developed computer-aided analysis and optimization software were used to obtain a set of parameters that satisfy the operation requirements of the seedling pick-up mechanism. According to the optimized parameters, the structure of the seedling pick-up mechanism was designed, a virtual prototype of the mechanism was created, and a physical prototype was manufactured. A virtual motion simulation of the mechanism was performed, high-speed photographic kinematics tests were conducted, and the kinematic properties of the physical prototype were investigated, whereby the correctness of the theoretical model and the optimized design of the mechanism were verified. Further, laboratory seedling pick-up tests were conducted. The success ratio of seedling pick-up was 93.8% when the seedling pick-up efficiency of the mechanism was 60 plants per minute per row, indicating that the mechanism has a high efficiency and success ratio for seedling pick-up and can be applied to a dryland plug seedling transplanter.