This paper reviews the state of the art of research and industry practice on demand response and the new methodology of transactive energy. Demand response programs incentivize consumers to align their demand with pow...This paper reviews the state of the art of research and industry practice on demand response and the new methodology of transactive energy. Demand response programs incentivize consumers to align their demand with power supply conditions, enhancing power system reliability and economic operation. The design of demand response programs, performance of pilot projects and programs, consumer behaviors, and barriers are discussed.Transactive energy is a variant and a generalized form of demand response in that it manages both the supply and demand sides. It is intended for a changing environment with an increasing number of distributed resources and intelligent devices. It utilizes the flexibility of various generation/load resources to maintain a dynamic balance of supply and demand. These distributed resources are controlled by their owners. However, the design of transaction mechanisms should align the individual behaviors with the interests of the entire system. Transactive energy features real-time, autonomous, and decentralized decision making.The transition from demand response to transactive energy is also discussed.展开更多
The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution n...The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution network level, as well as increasing balancing needs at the whole system level. Control and coordination of a large number of distributed energy assets requires innovative approaches. Transactive control has received much attention due to its decentralized decision-making and transparent characteristics. This paper introduces the concept and main features of transactive control, followed by a literature review and demonstration projects that apply to transactive control. Cases are then presented to illustrate the transactive control framework. At the end, discussions and research directions are presented, for applying transactive control to operating power systems, characterized by a high penetration of distributed energy resources.展开更多
This paper provides a strategic solution for enhancing the cybersecurity of power distribution system operations when information and operation technologies converge in active distribution network(ADN). The paper firs...This paper provides a strategic solution for enhancing the cybersecurity of power distribution system operations when information and operation technologies converge in active distribution network(ADN). The paper first investigates the significance of Internet of Things(IoT) in enabling fine-grained observability and controllability of ADN in networked microgrids. Given severe cybersecurity vulnerabilities embedded in conventionally centralized energy management schemes, the paper then proposes a cyber-secure decentralized energy management framework that applies a distributed decision-making intelligence to networked microgrids while securing their individual mandates for optimal operation. In particular,the proposed framework takes advantage of software-defined networking technologies that can secure communications among IoT devices in individual microgrids, and exploits potentials for introducing blockchain technologies that can preserve the integrity of communications among networked microgrids in ADN. Furthermore, the paperpresents the details of application scenarios where the proposed framework is employed to secure peer-to-peer transactive energy management based on a set of interoperable blockchains. It is finally concluded that the proposed framework can play a significant role in enhancing the efficiency, reliability, resilience, and sustainability of electricity services in ADN.展开更多
Peer-to-peer(P2P)transactive energy trading offers a promising solution for facilitating the efficient and secure operation of a distribution system consisting of multiple prosumers.One critical but challenging task i...Peer-to-peer(P2P)transactive energy trading offers a promising solution for facilitating the efficient and secure operation of a distribution system consisting of multiple prosumers.One critical but challenging task is how to avoid system network constraints to be violated for the distribution system integrated with extensive P2P transactive energy trades.This paper proposes a security constrained decentralized P2P transactive energy trading framework,which allows direct energy trades among neighboring prosumers in the distribution system with enhanced system efficiency and security in which no conventional intermediary is required.The P2P transactive energy trading problem is formulated based on the Nash Bargaining theory and decomposed into two subproblems,i.e.,an OPF problem(P1)and a payment bargaining problem(P2).A distributed optimization method based on the alternating direction method of multiplier(ADMM)is adopted as a privacy-preserving solution to the formulated security constrained P2P transactive energy trading model with ensured accuracy.Extensive case studies based on a modified 33-bus distribution system are presented to validate the effectiveness of the proposed security constrained decentralized P2P transactive energy trading framework in terms of efficiency improvement,loss reduction,and voltage security enhancement.展开更多
As an integrated carrier of energy production,transmission,distribution,conversion,storage,and utilization,multiple energy systems(MESs)have significant low-carbon potential.This paper proposes a hierarchical distribu...As an integrated carrier of energy production,transmission,distribution,conversion,storage,and utilization,multiple energy systems(MESs)have significant low-carbon potential.This paper proposes a hierarchical distributed dispatch model of MESs considering carbon trading,which is composed of the lower autonomous operation level of each MES and the upper coordinated control level.Different carbon emission sources are considered,including combined heat and power(CHP)units,gas boilers,and power to gas(P2G)devices.The transactive control(TC)mechanism is used to solve the model by introducing a virtual price signal.In the case study based on a 3-MES system,the effectiveness of the proposed distributed method is proved by comparison with a centralized algorithm.Meanwhile,the impacts of different carbon prices on MESs with different resource endowments are analyzed from the aspects of scheduling results,carbon emissions,clean energy consumption rate,and comprehensive operating costs.展开更多
Aggregating demand side flexibility is essential to complementing the inflexible and variable renewable energy supply in achieving low carbon energy systems.Sources of demand side flexibility,e.g.,dispatchable generat...Aggregating demand side flexibility is essential to complementing the inflexible and variable renewable energy supply in achieving low carbon energy systems.Sources of demand side flexibility,e.g.,dispatchable generators,storage,and flexible loads,can be structured in a form of microgrids and collectively provided to utility grids through transactive energy in local energy markets.This paper proposes a framework of local energy markets to manage this transactive energy and facilitate the flexibility provision.The distribution system operator aims to achieve local energy balance by scheduling the operation of multi-microgrids and determining the imbalance prices.Multiple microgrid traders aim to maximize profits for their prosumers through dispatching flexibility sources and participating in localised energy trading.The decision making and interactions between a distribution system operator and multiple microgrid traders are formulated as the Stackelberg game-theoretic problem.Case studies using the IEEE 69-bus distribution system demonstrate the effectiveness of the developed model in terms of facilitating local energy balance and reducing dependency on the utility grids.展开更多
Objective To examine the effect of combined treatment with Bojungikgi-tang(BJIGT,Buzhong Yiqi Decoction)and riluzole(RZ)in transactive response DNA-binding protein 43(TDP-43)stress granule(SG)cells,a amyotrophic later...Objective To examine the effect of combined treatment with Bojungikgi-tang(BJIGT,Buzhong Yiqi Decoction)and riluzole(RZ)in transactive response DNA-binding protein 43(TDP-43)stress granule(SG)cells,a amyotrophic lateral sclerosis(ALS)cell line using transcriptomic and molecular techniques.Methods TDP-43 SG cells were pretreated with BJIGT(100µg/mL),RZ(50µmol/L),and combined BJIGT(100µg/mL)/RZ(50µmol/L)for 6 h before treatment with lipopolysaccharide(LPS,200µmol/L).Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8(CCK8)assay kit.The expression levels of cell death-related proteins,including Bax,caspase 1,cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis.The autophagy-related proteins,including pmTOR/mTOR,LC3b,P62,ATG7 and Bcl-2-associated athanogene 3(Bag3)were investigated using immunofluorescence and immunoblotting assays.Results Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins,including Bax,caspase 1,and DJ1(P<0.05 or P<0.01).Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels,including p62,light chain 3b,Bag3,and ATG7,in TDP-43-expressing cells(P<0.05 or P<0.01).Conclusion The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.展开更多
The emergence of prosumers in distribution systems has enabled competitive electricity markets to transition from traditional hierarchical structures to more decentralized models such as peer-to-peer(P2P)and community...The emergence of prosumers in distribution systems has enabled competitive electricity markets to transition from traditional hierarchical structures to more decentralized models such as peer-to-peer(P2P)and community-based(CB)energy transaction markets.However,the network usage charge(NUC)that prosumers pay to the electric power utility for network services is not adjusted to suit these energy transactions,which causes a reduction in revenue streams of the utility.In this study,we propose an NUC calculation method for P2P and CB transactions to address holistically economic and technical issues in transactive energy markets and distribution system operations,respectively.Based on the Nash bargaining(NB)theory,we formulate an NB problem for P2P and CB transactions to solve the conflicts of interest among prosumers,where the problem is further decomposed into two convex subproblems of social welfare maximization and payment bargaining.We then build the NUC calculation model by coupling the NB model and AC optimal power flow model.We also employ the Shapley value to allocate the NUC to consumers fairly for the NUC model of CB transactions.Finally,numerical studies on IEEE 15-bus and 123-bus distribution systems demonstrate the effectiveness of the proposed NUC calculation method for P2P and CB transactions.展开更多
The penetration of multi-carrier energy systems in distribution system gains more and more concerns.In this paper,a bi-level transactive energy trading framework is proposed to improve the energy scheduling and operat...The penetration of multi-carrier energy systems in distribution system gains more and more concerns.In this paper,a bi-level transactive energy trading framework is proposed to improve the energy scheduling and operation efficiency for multi-carrier energy systems which are modeled as energy hubs(EHs).In the upper level,each EH in the distribution system not only makes energy scheduling decisions considering supplies and demands of local energy,but also trades energy with each other to further maximize their social welfare.The associated trading payment among EHs is made in a fair manner by applying Nash bargaining theory.We solve the bargaining problem by decomposing it into two subproblems:operation cost minimization problem and payment bargaining problem.Then,based on the trading decision,the nodal equivalent loads of EHs are sent to the distribution system operator(DSO)without publishing trading details.By applying the second-order cone programming(SOCP),DSO reconfigures the network to reduce the transmission loss of the system in the lower level.The network reconfiguration and the trading behavior of EHs interact and iterate until the convergence.Numerical studies on modified IEEE 33-bus distribution system demonstrate the effectiveness of the proposed framework.展开更多
Interest in transactive energy frameworks(TEFs)is proliferating due to the modern smart grid paradigm.This paper proposes a TEF,which applies auction-theory,incorporates a system of agents,and facilitates a transactiv...Interest in transactive energy frameworks(TEFs)is proliferating due to the modern smart grid paradigm.This paper proposes a TEF,which applies auction-theory,incorporates a system of agents,and facilitates a transactive energy market(TEM)through an auctioneer.Further,it also enables peer-to-peer(P2P)energy trading among the residential buildings in community microgrid for possible monetary benefits.In this framework,there are three agents,namely,auctioneer,participants,and utility.The auctioneer is a managing agent modeled using auction theory to determine day-ahead internal market-clearing price and quantity.The participants are autonomous and rational decision-makers;they aim to minimize their electricity bills through the demand response(DR)management.Two types of architectures,one with the third-party agent demonstrated using the MATLAB environment and the other with the virtual agent(without third-party)implemented using the blockchain environment are presented.The simulation results reflect significant monetary benefits to each market participant,improved community selfsufficiency,self-consumption,and reduced reliance on the utility grid.展开更多
Healthcare for older adults with dementia is an important healthcare problem in Japan and in other developed countries. Importantly, healthcare workers in Japan are also getting older. In order to address solutions to...Healthcare for older adults with dementia is an important healthcare problem in Japan and in other developed countries. Importantly, healthcare workers in Japan are also getting older. In order to address solutions to this problem, using robots is being realized and is starting to assist healthcare and welfare practice needs. The aim of this study was to identify the characteristics of a transactive phenomenon in relationships among older adults with dementia, with nurses as intermediaries and with a cognitive skill-aid robot. Subjects were two institutionalized older adults who were diagnosed with dementia using Hasegawa’s Dementia Scale-Revised;a Kabochan (Nodding Kabochan) fixed with a remote-controlled speaker, Pechat (Kabochan with Pechat). Measurements of autonomic nervous activity were done using wearable electrocardiography attached to the subjects for four hours. Heart Rate Variability data were assessed at various frequency bands using a HRV software tool. In a continuously recorded data, interbeat (R-R) intervals were obtained for a 1-min segment using the maximum entropy method. In this study, the two major spectral components of HRV, the variances of the low-frequency (LF: 0.04 - 0.15 Hz) band and high-frequency (HF: 0.15 - 0.4 Hz) band, were calculated. Activities and behaviors of subjects transacting with Kabochan were observed by the expert nurses and video-recorded. Throughout the transaction period, observations were recorded of patients’ behavior, words uttered and over-all contents of the transactive conversation with the Kabochan or Kabochan with Pechat. Identified characteristics were transactive relationship phenomenon;changes in autonomic nervous system activity of persons with dementia are expressed as per one minute, linguistic response of elderly people, transactive relations among Kabochan, Kabochan with Pechat, and nurses as intermediaries. These were exhibited as Figures: Situation 1, A Sense of Fear, Situation 2, A Pleasant Sensation, and Situation 3, Misunderstanding and Confus展开更多
Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that ar...Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding,accumulation,aggregation or mislocalization occur.Some of them(like the unfolded protein response)represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis(also known as proteostasis).This is even more important in neurons,as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age.Several neurodegenerative pathologies such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct,unbalanced protein overload.In amyotrophic lateral sclerosis and frontotemporal dementia,the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa(TDP-43).TDP-43 is an RNA binding protein that participates in RNA metabolism,among other functions.Dysregulation of TDP-43(e.g.aggregation and mislocalization)can dramatically affect neurons,and this has been linked to disease development.Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum.These variants can be causative of degeneration onset and progression.Most neurodegenerative diseases(including amyotrophic lateral sclerosis and frontotemporal dementia)have no cure at the moment;however,modulating translation has recently emerged as an attractive approach that can be performed at several steps(i.e.regulating activation of initiation and elongation f展开更多
Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of viola...Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of violating preferences and privacies of stakeholders.A promising solution for supplydemand coordination is to utilize a transactive energy(TE)based energy management method to indirectly coordinate the local DERs,which enables the distribution-level energy providers,consumers,and prosumers to trade energy with each other through a transactive energy system(TES)trading platform.This paper provides a comprehensive review of a TES and presents a detailed classification from different perspectives,including TES participants,structure,commodity,clearing method,and solution algorithm.The presented detailed component-scale classification can be used as a reference for future TES designs.Finally,two additional market tools,i.e.,penalty mechanism and loss allocation mechanism,are discussed as future focus areas,which can be seen as necessary complements to a TES for ensuring feasibility and fairness of energy trading.展开更多
In recent years,the advent of microgrids with numerous renewable energy sources has created some fundamental challenges in the control,coordination,and management of energy trading between microgrids and the power gri...In recent years,the advent of microgrids with numerous renewable energy sources has created some fundamental challenges in the control,coordination,and management of energy trading between microgrids and the power grid.To respond to these challenges,some techniques such as the transactive energy(TE)technology are proposed to control energy sharing.Therefore,this paper uses TE technology for energy exchange control among the microgrids,and applies three operation cases for analyzing the energy trading control of four and ten microgrids with the aim of minimizing the energy cost of each microgrid,respectively.In this regard,Monte Carlo simulation and fast forward selection(FFS)methods are respectively exerted for scenario generation and reduction in uncertainty modeling process.The first case is assumed that all microgrids can only receive energy from the network and do not have any connection with each other.In order to maximize the energy cost saving of each microgrid,the second case is proposed to provide a positive percentage of cost saving for microgrids.All microgrids can also trade energy with each other to get the most benefit by reducing the dependency on the main grid.The third case is similar to the second case,but its target is to indicate the scalability of the models based on the proposed TE technology by considering ten commercial microgrids.Finally,the simulation results indicate that microgrids can achieve the positive amount of cost saving in the second and third cases.In addition,the total energy cost of microgrids has been reduced in comparison with the first case.展开更多
The decreasing cost of solar photovoltaics(PVs)and battery storage systems is driving their adoption in the residential distribution system,where more consumers are becoming prosumers.Accompanying this trend is the po...The decreasing cost of solar photovoltaics(PVs)and battery storage systems is driving their adoption in the residential distribution system,where more consumers are becoming prosumers.Accompanying this trend is the potential roll-out of home energy management systems(HEMSs),which provide a means for prosumers to respond to externalities such as energy price,weather,and energy demands.However,the economic operation of prosumers can affect grid security,especially when energy prices are extremely low or high.Therefore,it is paramount to design a framework that can accommodate the interests of the key stakeholders in distribution systems—namely,the network operator,prosumer,and aggregator.In this paper,a novel transactive energy(TE)-based operational framework is proposed.Under this frame-work,aggregators interact with the distribution grid operator through a negotiation process to ensure network security,while at the lower level,prosumers submit their schedule to the aggregator through the HEMS.If network security is at risk,aggregators will send an additional price component representing the cost of security(CoS)to the prosumer to stimulate further response.The simulation results show that the proposed framework can effectively ensure the economic operation of aggregators and prosumers in distribution systems while maintaining grid security.展开更多
This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laborator...This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laboratory-based implementation provides the first(to our knowledge)realization of a comprehensive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers(IEEE)2030.5 standard,which addresses interoperability within a cybersecure smart energy profile(SEP)context.Verification is provided by a full system integration with commercial hardware using Internet Protocol(IP)-based(local area network(LAN)and Wi-Fi)communication protocols and transport layer security(TLS)1.2 cryptographic protocol,and validation is provided by emulation using extensive residential smart meter data.The demand response(DR)scheme is designed to accommodate privacy concerns,allows customers to select their DR compliance level,and provides incentives to maximize their participation.The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0 messaging protocol between a transactive agent(TA)and home energy management system(HEMS)agents.Customer response is handled by a multi-input multi-output(MIMO)fuzzy controller that manages negotiation between the customer agent and the TA.We take a multi-agent system approach to neighborhood coordination,with the TA servicing multiple residences on a common transformer,and use a reward mechanism to maximize customer engagement during the event-based optimization.Based on a set of smart meter data acquired over an extended time period,we engage in multiple TDR scenarios,and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our scheme can reduce network peak power consumption by 22%under realistic conditions.展开更多
This work investigates an uncertainty quantification(UQ)framework that analyses the uncertainty involved in modelling control systems to improve control strategy performance.The framework involves solving four problem...This work investigates an uncertainty quantification(UQ)framework that analyses the uncertainty involved in modelling control systems to improve control strategy performance.The framework involves solving four problems:identifying uncertain parameters,propagating uncertainty to the quantity of interest,data assimilation and making decisions under quantified uncertainties.A specific group of UQ approaches,known as the ensemble-based methods,are adopted to solve these problems.This UQ framework is applied to coordinating a group of thermostatically controlled loads,which relies on simulating a second-order equivalent thermal parameter model with some uncertain parameters.How this uncertainty affects the prediction and the control of total power is examined.The study shows that uncertainty can be effectively reduced using the measurement of air temperatures.Also,the control objective is achieved fairly accurately with a quantification of the uncertainty.展开更多
Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagem...Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagement framework that is fair and brings system-level savings. The cooperative–competitive natureof energy markets calls for multi-agent based automation with learning energy trading agents. However,depending on the dynamics of the agent–environment interaction, this approach may yield unintended behaviorof market participants. Thus, the design of market mechanisms suitable for reinforcement learning agentsmust take into account this interplay. This article introduces autonomous local energy exchange (ALEX) asan experimental framework that combines multi-agent learning and double auction mechanism. Participantsdetermine their internal price signals and make energy management decisions through market interactions,rather than relying on predetermined external price signals. The main contribution of this article is examinationof compatibility between specific market elements and independent learning agents. Effects of different marketproperties are evaluated through simulation experiments, and the results are used for determine a suitablemarket design. The results show that market truthfulness maintains demand-response functionality, while weakbudget balancing provides a strong reinforcement signal for the learning agents. The resulting agent behavioris compared with two baselines: net billing and time-of-use rates. The ALEX-based pricing is more responsiveto fluctuations in the community net load compared to the time-of-use. The more accurate accounting ofrenewable energy usage reduced bills by a median 38.8% compared to net billing, confirming the ability tobetter facilitate demand response.展开更多
基金This work is sponsored by Department of Commerce,State of Washington,and US Department of Energy,USA,through the Transactive Campus Energy Systems project,in collaboration with Pacific Northwest National Lab and University of Washington.
文摘This paper reviews the state of the art of research and industry practice on demand response and the new methodology of transactive energy. Demand response programs incentivize consumers to align their demand with power supply conditions, enhancing power system reliability and economic operation. The design of demand response programs, performance of pilot projects and programs, consumer behaviors, and barriers are discussed.Transactive energy is a variant and a generalized form of demand response in that it manages both the supply and demand sides. It is intended for a changing environment with an increasing number of distributed resources and intelligent devices. It utilizes the flexibility of various generation/load resources to maintain a dynamic balance of supply and demand. These distributed resources are controlled by their owners. However, the design of transaction mechanisms should align the individual behaviors with the interests of the entire system. Transactive energy features real-time, autonomous, and decentralized decision making.The transition from demand response to transactive energy is also discussed.
基金financed by the TNO Early Research Program on Energy Storage and Conversion(ERP ECS)through the SOSENS projectpartly supported by the Danish iPower project(http://www.ipowernet.dk/)funded by the Danish Agency for Research and Innovation(No.0603-00435B)
文摘The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution network level, as well as increasing balancing needs at the whole system level. Control and coordination of a large number of distributed energy assets requires innovative approaches. Transactive control has received much attention due to its decentralized decision-making and transparent characteristics. This paper introduces the concept and main features of transactive control, followed by a literature review and demonstration projects that apply to transactive control. Cases are then presented to illustrate the transactive control framework. At the end, discussions and research directions are presented, for applying transactive control to operating power systems, characterized by a high penetration of distributed energy resources.
文摘This paper provides a strategic solution for enhancing the cybersecurity of power distribution system operations when information and operation technologies converge in active distribution network(ADN). The paper first investigates the significance of Internet of Things(IoT) in enabling fine-grained observability and controllability of ADN in networked microgrids. Given severe cybersecurity vulnerabilities embedded in conventionally centralized energy management schemes, the paper then proposes a cyber-secure decentralized energy management framework that applies a distributed decision-making intelligence to networked microgrids while securing their individual mandates for optimal operation. In particular,the proposed framework takes advantage of software-defined networking technologies that can secure communications among IoT devices in individual microgrids, and exploits potentials for introducing blockchain technologies that can preserve the integrity of communications among networked microgrids in ADN. Furthermore, the paperpresents the details of application scenarios where the proposed framework is employed to secure peer-to-peer transactive energy management based on a set of interoperable blockchains. It is finally concluded that the proposed framework can play a significant role in enhancing the efficiency, reliability, resilience, and sustainability of electricity services in ADN.
基金This work was supported in part by Shanghai Science and Technology Plan:Research and application for key technologies of public building virtual power plant based on distributed resource aggregation control,China(No.20dz1206200).
文摘Peer-to-peer(P2P)transactive energy trading offers a promising solution for facilitating the efficient and secure operation of a distribution system consisting of multiple prosumers.One critical but challenging task is how to avoid system network constraints to be violated for the distribution system integrated with extensive P2P transactive energy trades.This paper proposes a security constrained decentralized P2P transactive energy trading framework,which allows direct energy trades among neighboring prosumers in the distribution system with enhanced system efficiency and security in which no conventional intermediary is required.The P2P transactive energy trading problem is formulated based on the Nash Bargaining theory and decomposed into two subproblems,i.e.,an OPF problem(P1)and a payment bargaining problem(P2).A distributed optimization method based on the alternating direction method of multiplier(ADMM)is adopted as a privacy-preserving solution to the formulated security constrained P2P transactive energy trading model with ensured accuracy.Extensive case studies based on a modified 33-bus distribution system are presented to validate the effectiveness of the proposed security constrained decentralized P2P transactive energy trading framework in terms of efficiency improvement,loss reduction,and voltage security enhancement.
基金supported by the National Natural Science Foundation of China (U2166211).
文摘As an integrated carrier of energy production,transmission,distribution,conversion,storage,and utilization,multiple energy systems(MESs)have significant low-carbon potential.This paper proposes a hierarchical distributed dispatch model of MESs considering carbon trading,which is composed of the lower autonomous operation level of each MES and the upper coordinated control level.Different carbon emission sources are considered,including combined heat and power(CHP)units,gas boilers,and power to gas(P2G)devices.The transactive control(TC)mechanism is used to solve the model by introducing a virtual price signal.In the case study based on a 3-MES system,the effectiveness of the proposed distributed method is proved by comparison with a centralized algorithm.Meanwhile,the impacts of different carbon prices on MESs with different resource endowments are analyzed from the aspects of scheduling results,carbon emissions,clean energy consumption rate,and comprehensive operating costs.
基金supported by National Key Research and Development Program of China (2019YFE0123600)National Natural Science Foundation of China (U2066211,52177124)+2 种基金in part by the Institute of Electrical Engineering,CAS (E155610101)the Youth Innovation Promotion Association of CAS (No.2019143)in part by the Ministry of Science and Technology of Chinese Taiwan under Grant MOST 109-2221-E007-020.
文摘Aggregating demand side flexibility is essential to complementing the inflexible and variable renewable energy supply in achieving low carbon energy systems.Sources of demand side flexibility,e.g.,dispatchable generators,storage,and flexible loads,can be structured in a form of microgrids and collectively provided to utility grids through transactive energy in local energy markets.This paper proposes a framework of local energy markets to manage this transactive energy and facilitate the flexibility provision.The distribution system operator aims to achieve local energy balance by scheduling the operation of multi-microgrids and determining the imbalance prices.Multiple microgrid traders aim to maximize profits for their prosumers through dispatching flexibility sources and participating in localised energy trading.The decision making and interactions between a distribution system operator and multiple microgrid traders are formulated as the Stackelberg game-theoretic problem.Case studies using the IEEE 69-bus distribution system demonstrate the effectiveness of the developed model in terms of facilitating local energy balance and reducing dependency on the utility grids.
基金Supported by the Korea Institute of Oriental Medicine(KIOM)under Grant(No.C18040)。
文摘Objective To examine the effect of combined treatment with Bojungikgi-tang(BJIGT,Buzhong Yiqi Decoction)and riluzole(RZ)in transactive response DNA-binding protein 43(TDP-43)stress granule(SG)cells,a amyotrophic lateral sclerosis(ALS)cell line using transcriptomic and molecular techniques.Methods TDP-43 SG cells were pretreated with BJIGT(100µg/mL),RZ(50µmol/L),and combined BJIGT(100µg/mL)/RZ(50µmol/L)for 6 h before treatment with lipopolysaccharide(LPS,200µmol/L).Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8(CCK8)assay kit.The expression levels of cell death-related proteins,including Bax,caspase 1,cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis.The autophagy-related proteins,including pmTOR/mTOR,LC3b,P62,ATG7 and Bcl-2-associated athanogene 3(Bag3)were investigated using immunofluorescence and immunoblotting assays.Results Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins,including Bax,caspase 1,and DJ1(P<0.05 or P<0.01).Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels,including p62,light chain 3b,Bag3,and ATG7,in TDP-43-expressing cells(P<0.05 or P<0.01).Conclusion The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.
基金supported in part by the Foundation of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS22015)in part by Shanghai Science and Technology Development Funds(No.22YF1429500)。
文摘The emergence of prosumers in distribution systems has enabled competitive electricity markets to transition from traditional hierarchical structures to more decentralized models such as peer-to-peer(P2P)and community-based(CB)energy transaction markets.However,the network usage charge(NUC)that prosumers pay to the electric power utility for network services is not adjusted to suit these energy transactions,which causes a reduction in revenue streams of the utility.In this study,we propose an NUC calculation method for P2P and CB transactions to address holistically economic and technical issues in transactive energy markets and distribution system operations,respectively.Based on the Nash bargaining(NB)theory,we formulate an NB problem for P2P and CB transactions to solve the conflicts of interest among prosumers,where the problem is further decomposed into two convex subproblems of social welfare maximization and payment bargaining.We then build the NUC calculation model by coupling the NB model and AC optimal power flow model.We also employ the Shapley value to allocate the NUC to consumers fairly for the NUC model of CB transactions.Finally,numerical studies on IEEE 15-bus and 123-bus distribution systems demonstrate the effectiveness of the proposed NUC calculation method for P2P and CB transactions.
文摘The penetration of multi-carrier energy systems in distribution system gains more and more concerns.In this paper,a bi-level transactive energy trading framework is proposed to improve the energy scheduling and operation efficiency for multi-carrier energy systems which are modeled as energy hubs(EHs).In the upper level,each EH in the distribution system not only makes energy scheduling decisions considering supplies and demands of local energy,but also trades energy with each other to further maximize their social welfare.The associated trading payment among EHs is made in a fair manner by applying Nash bargaining theory.We solve the bargaining problem by decomposing it into two subproblems:operation cost minimization problem and payment bargaining problem.Then,based on the trading decision,the nodal equivalent loads of EHs are sent to the distribution system operator(DSO)without publishing trading details.By applying the second-order cone programming(SOCP),DSO reconfigures the network to reduce the transmission loss of the system in the lower level.The network reconfiguration and the trading behavior of EHs interact and iterate until the convergence.Numerical studies on modified IEEE 33-bus distribution system demonstrate the effectiveness of the proposed framework.
文摘Interest in transactive energy frameworks(TEFs)is proliferating due to the modern smart grid paradigm.This paper proposes a TEF,which applies auction-theory,incorporates a system of agents,and facilitates a transactive energy market(TEM)through an auctioneer.Further,it also enables peer-to-peer(P2P)energy trading among the residential buildings in community microgrid for possible monetary benefits.In this framework,there are three agents,namely,auctioneer,participants,and utility.The auctioneer is a managing agent modeled using auction theory to determine day-ahead internal market-clearing price and quantity.The participants are autonomous and rational decision-makers;they aim to minimize their electricity bills through the demand response(DR)management.Two types of architectures,one with the third-party agent demonstrated using the MATLAB environment and the other with the virtual agent(without third-party)implemented using the blockchain environment are presented.The simulation results reflect significant monetary benefits to each market participant,improved community selfsufficiency,self-consumption,and reduced reliance on the utility grid.
文摘Healthcare for older adults with dementia is an important healthcare problem in Japan and in other developed countries. Importantly, healthcare workers in Japan are also getting older. In order to address solutions to this problem, using robots is being realized and is starting to assist healthcare and welfare practice needs. The aim of this study was to identify the characteristics of a transactive phenomenon in relationships among older adults with dementia, with nurses as intermediaries and with a cognitive skill-aid robot. Subjects were two institutionalized older adults who were diagnosed with dementia using Hasegawa’s Dementia Scale-Revised;a Kabochan (Nodding Kabochan) fixed with a remote-controlled speaker, Pechat (Kabochan with Pechat). Measurements of autonomic nervous activity were done using wearable electrocardiography attached to the subjects for four hours. Heart Rate Variability data were assessed at various frequency bands using a HRV software tool. In a continuously recorded data, interbeat (R-R) intervals were obtained for a 1-min segment using the maximum entropy method. In this study, the two major spectral components of HRV, the variances of the low-frequency (LF: 0.04 - 0.15 Hz) band and high-frequency (HF: 0.15 - 0.4 Hz) band, were calculated. Activities and behaviors of subjects transacting with Kabochan were observed by the expert nurses and video-recorded. Throughout the transaction period, observations were recorded of patients’ behavior, words uttered and over-all contents of the transactive conversation with the Kabochan or Kabochan with Pechat. Identified characteristics were transactive relationship phenomenon;changes in autonomic nervous system activity of persons with dementia are expressed as per one minute, linguistic response of elderly people, transactive relations among Kabochan, Kabochan with Pechat, and nurses as intermediaries. These were exhibited as Figures: Situation 1, A Sense of Fear, Situation 2, A Pleasant Sensation, and Situation 3, Misunderstanding and Confus
基金supported by research grants to LMI from University of Buenos Aires(UBACyT)the Agencia Nacional de Promoción Científica y Tecnológica(ANPCyT)under grants PICT 2015-0975 and PICT 2017-2140。
文摘Protein synthesis is essential for cells to perform life metabolic processes.Pathological alterations of protein content can lead to particular diseases.Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding,accumulation,aggregation or mislocalization occur.Some of them(like the unfolded protein response)represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis(also known as proteostasis).This is even more important in neurons,as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age.Several neurodegenerative pathologies such as Alzheimer’s,Parkinson’s,and Huntington’s diseases,amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct,unbalanced protein overload.In amyotrophic lateral sclerosis and frontotemporal dementia,the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa(TDP-43).TDP-43 is an RNA binding protein that participates in RNA metabolism,among other functions.Dysregulation of TDP-43(e.g.aggregation and mislocalization)can dramatically affect neurons,and this has been linked to disease development.Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum.These variants can be causative of degeneration onset and progression.Most neurodegenerative diseases(including amyotrophic lateral sclerosis and frontotemporal dementia)have no cure at the moment;however,modulating translation has recently emerged as an attractive approach that can be performed at several steps(i.e.regulating activation of initiation and elongation f
基金This work is supported by the National Research Foundation of Singapore,and the Energy Market Authority,under the Exploiting Distributed Generation(EDGE)Programme and administrated by the EDGE Programme Office(EDGE Programme Award No.EDGEGC2018-003).
文摘Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of violating preferences and privacies of stakeholders.A promising solution for supplydemand coordination is to utilize a transactive energy(TE)based energy management method to indirectly coordinate the local DERs,which enables the distribution-level energy providers,consumers,and prosumers to trade energy with each other through a transactive energy system(TES)trading platform.This paper provides a comprehensive review of a TES and presents a detailed classification from different perspectives,including TES participants,structure,commodity,clearing method,and solution algorithm.The presented detailed component-scale classification can be used as a reference for future TES designs.Finally,two additional market tools,i.e.,penalty mechanism and loss allocation mechanism,are discussed as future focus areas,which can be seen as necessary complements to a TES for ensuring feasibility and fairness of energy trading.
基金supported by the Research Affairs Office of University of Tabriz,Tabriz,Iran
文摘In recent years,the advent of microgrids with numerous renewable energy sources has created some fundamental challenges in the control,coordination,and management of energy trading between microgrids and the power grid.To respond to these challenges,some techniques such as the transactive energy(TE)technology are proposed to control energy sharing.Therefore,this paper uses TE technology for energy exchange control among the microgrids,and applies three operation cases for analyzing the energy trading control of four and ten microgrids with the aim of minimizing the energy cost of each microgrid,respectively.In this regard,Monte Carlo simulation and fast forward selection(FFS)methods are respectively exerted for scenario generation and reduction in uncertainty modeling process.The first case is assumed that all microgrids can only receive energy from the network and do not have any connection with each other.In order to maximize the energy cost saving of each microgrid,the second case is proposed to provide a positive percentage of cost saving for microgrids.All microgrids can also trade energy with each other to get the most benefit by reducing the dependency on the main grid.The third case is similar to the second case,but its target is to indicate the scalability of the models based on the proposed TE technology by considering ten commercial microgrids.Finally,the simulation results indicate that microgrids can achieve the positive amount of cost saving in the second and third cases.In addition,the total energy cost of microgrids has been reduced in comparison with the first case.
基金supported by PVST project, funded under the Danish Energiteknologiske Udviklings-og Demonstrationsprogram (EUDP) programme (64017-0041)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (LAPS21)
文摘The decreasing cost of solar photovoltaics(PVs)and battery storage systems is driving their adoption in the residential distribution system,where more consumers are becoming prosumers.Accompanying this trend is the potential roll-out of home energy management systems(HEMSs),which provide a means for prosumers to respond to externalities such as energy price,weather,and energy demands.However,the economic operation of prosumers can affect grid security,especially when energy prices are extremely low or high.Therefore,it is paramount to design a framework that can accommodate the interests of the key stakeholders in distribution systems—namely,the network operator,prosumer,and aggregator.In this paper,a novel transactive energy(TE)-based operational framework is proposed.Under this frame-work,aggregators interact with the distribution grid operator through a negotiation process to ensure network security,while at the lower level,prosumers submit their schedule to the aggregator through the HEMS.If network security is at risk,aggregators will send an additional price component representing the cost of security(CoS)to the prosumer to stimulate further response.The simulation results show that the proposed framework can effectively ensure the economic operation of aggregators and prosumers in distribution systems while maintaining grid security.
基金Natural Sciences and Engineering Council of Canada(CRDPJ 477238-14)and Hydro Ottawa。
文摘This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laboratory-based implementation provides the first(to our knowledge)realization of a comprehensive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers(IEEE)2030.5 standard,which addresses interoperability within a cybersecure smart energy profile(SEP)context.Verification is provided by a full system integration with commercial hardware using Internet Protocol(IP)-based(local area network(LAN)and Wi-Fi)communication protocols and transport layer security(TLS)1.2 cryptographic protocol,and validation is provided by emulation using extensive residential smart meter data.The demand response(DR)scheme is designed to accommodate privacy concerns,allows customers to select their DR compliance level,and provides incentives to maximize their participation.The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0 messaging protocol between a transactive agent(TA)and home energy management system(HEMS)agents.Customer response is handled by a multi-input multi-output(MIMO)fuzzy controller that manages negotiation between the customer agent and the TA.We take a multi-agent system approach to neighborhood coordination,with the TA servicing multiple residences on a common transformer,and use a reward mechanism to maximize customer engagement during the event-based optimization.Based on a set of smart meter data acquired over an extended time period,we engage in multiple TDR scenarios,and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our scheme can reduce network peak power consumption by 22%under realistic conditions.
基金the Control of Complex Systems Initiative at Pacific Northwest National Laboratory(PNNL).PNNL is operated by Battelle for the U.S.Department of Energy under contract[DE-AC05-76RL01830].
文摘This work investigates an uncertainty quantification(UQ)framework that analyses the uncertainty involved in modelling control systems to improve control strategy performance.The framework involves solving four problems:identifying uncertain parameters,propagating uncertainty to the quantity of interest,data assimilation and making decisions under quantified uncertainties.A specific group of UQ approaches,known as the ensemble-based methods,are adopted to solve these problems.This UQ framework is applied to coordinating a group of thermostatically controlled loads,which relies on simulating a second-order equivalent thermal parameter model with some uncertain parameters.How this uncertainty affects the prediction and the control of total power is examined.The study shows that uncertainty can be effectively reduced using the measurement of air temperatures.Also,the control objective is achieved fairly accurately with a quantification of the uncertainty.
文摘Local energy markets are emerging as a tool for coordinating generation, storage, and consumption of energyfrom distributed resources. In combination with automation, they promise to provide an effective energymanagement framework that is fair and brings system-level savings. The cooperative–competitive natureof energy markets calls for multi-agent based automation with learning energy trading agents. However,depending on the dynamics of the agent–environment interaction, this approach may yield unintended behaviorof market participants. Thus, the design of market mechanisms suitable for reinforcement learning agentsmust take into account this interplay. This article introduces autonomous local energy exchange (ALEX) asan experimental framework that combines multi-agent learning and double auction mechanism. Participantsdetermine their internal price signals and make energy management decisions through market interactions,rather than relying on predetermined external price signals. The main contribution of this article is examinationof compatibility between specific market elements and independent learning agents. Effects of different marketproperties are evaluated through simulation experiments, and the results are used for determine a suitablemarket design. The results show that market truthfulness maintains demand-response functionality, while weakbudget balancing provides a strong reinforcement signal for the learning agents. The resulting agent behavioris compared with two baselines: net billing and time-of-use rates. The ALEX-based pricing is more responsiveto fluctuations in the community net load compared to the time-of-use. The more accurate accounting ofrenewable energy usage reduced bills by a median 38.8% compared to net billing, confirming the ability tobetter facilitate demand response.