期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
1
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Torgerson方法在某斑岩铜钼矿蚀变与矿化分析中的应用 被引量:2
2
作者 张治国 韩燕 《世界地质》 CAS CSCD 2002年第4期401-405,共5页
Torgerson方法是一种多维标度法。用于研究变量或样本对象 ,它从一组对象的两两之间的相似性度量或非相似性度量出发 ,求出这组对象在某低维空间中的标度 ,从而发现这组对象的整体关系。通过它在某斑岩铜钼矿的蚀变与矿化分析的实例应... Torgerson方法是一种多维标度法。用于研究变量或样本对象 ,它从一组对象的两两之间的相似性度量或非相似性度量出发 ,求出这组对象在某低维空间中的标度 ,从而发现这组对象的整体关系。通过它在某斑岩铜钼矿的蚀变与矿化分析的实例应用 ,说明该方法在矿产资源评价方面具有一定的实效性。 展开更多
关键词 torgerson方法 多维标度法 斑岩铜钼矿
下载PDF
模糊托格森多维标度法
3
作者 吕振伟 《太原大学学报》 2010年第3期129-131,共3页
多维标度法是进行数据挖掘常用的方法之一,这种方法将对象之间复杂的关系用相对简单的点距离表示出来,现在广泛应用于心理学、地质学、环境分析和知识结构分析等众多难以取得准确定量资料的领域。文中提出了相异度的概念,并将其作为一... 多维标度法是进行数据挖掘常用的方法之一,这种方法将对象之间复杂的关系用相对简单的点距离表示出来,现在广泛应用于心理学、地质学、环境分析和知识结构分析等众多难以取得准确定量资料的领域。文中提出了相异度的概念,并将其作为一种非相似度量应用在经典的托格森多维标度法中。 展开更多
关键词 多维标度法 相异度 托格森方法 模糊集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部