The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of ...The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of a real normed linear space.The first aspect of stability deals with the topological set convergence of families of solution sets of perturbed problems in the image space and Painlevé–Kuratowski set convergence of solution sets of the perturbed problems in the given space.The convergence in the given space is also established in terms of solution sets of scalarized perturbed problems.The second aspect of stability deals with semicontinuity of the solution set maps of parametric perturbed problems in both the spaces.展开更多
Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continu...Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.展开更多
In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be ...In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be preserved under uniform convergence. We derive conditions under which some of the dynamical properties of the maps ?are preserved in .展开更多
基金supported by MATRICS scheme of Department of Science and Technology,India(No.MTR/2017/00016).
文摘The paper deals with the study of two different aspects of stability in the given space as well as the image space,where the solution concepts are based on a partial order relation on the family of bounded subsets of a real normed linear space.The first aspect of stability deals with the topological set convergence of families of solution sets of perturbed problems in the image space and Painlevé–Kuratowski set convergence of solution sets of the perturbed problems in the given space.The convergence in the given space is also established in terms of solution sets of scalarized perturbed problems.The second aspect of stability deals with semicontinuity of the solution set maps of parametric perturbed problems in both the spaces.
基金CSIR ( project no. F.NO. 8/3(45)/2005-EMR-I)for providing financial support to carry out the research work
文摘Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.
文摘In this paper we study the dynamical behavior of a system ?approximated uniformly by a sequence ?of chaotic maps. We give examples to show that properties like sensitivity and denseness of periodic points need not be preserved under uniform convergence. We derive conditions under which some of the dynamical properties of the maps ?are preserved in .