Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization o...Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network.展开更多
A new method of multi-scale modeling and display of geologic data is introduced to provide information with appropriate detail levels for different types of research. The multi-scale display mode employs a model exten...A new method of multi-scale modeling and display of geologic data is introduced to provide information with appropriate detail levels for different types of research. The multi-scale display mode employs a model extending existing 2D methods into 3D space. Geologic models with different scales are organized by segmenting data into orthogonal blocks. A flow diagram illustrates an octree method for upscaling between blocks with different scales. Upscaling data from the smallest unit cells takes into account their average size and the Burgers vector when there are mismatches. A geocellular model of the Chengdao Reservoir of the Shengli Oilfield, China is taken as an illustrative case, showing that the methods proposed can construct a multi-scale geologic model correctly and display data from the multi-scale model effectively in 3D.展开更多
基金The work was supported by the grants from:The National High-tech Research and Development Program of China,the National Natural Science Foundation of China,the Clinical Medicine Technology Foundation of Jiangsu Province,the Natural Science Foundation of Jiangsu Province,State Key Clinical Specialty,Provincial Medical Key Discipline
文摘Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network.
基金supported by the National High-Tech Research & Development Program of China (No. 2009AA062802) the Fundamental Research Funds for the Central Universities of China (No. 12CX06001A)Shandong Provincial Natural Science Foundation, China (No. ZR2011DQ011)
文摘A new method of multi-scale modeling and display of geologic data is introduced to provide information with appropriate detail levels for different types of research. The multi-scale display mode employs a model extending existing 2D methods into 3D space. Geologic models with different scales are organized by segmenting data into orthogonal blocks. A flow diagram illustrates an octree method for upscaling between blocks with different scales. Upscaling data from the smallest unit cells takes into account their average size and the Burgers vector when there are mismatches. A geocellular model of the Chengdao Reservoir of the Shengli Oilfield, China is taken as an illustrative case, showing that the methods proposed can construct a multi-scale geologic model correctly and display data from the multi-scale model effectively in 3D.