期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Incorporating topographic factors in nonlinear mixed-effects models for aboveground biomass of natural Simao pine in Yunnan,China 被引量:2
1
作者 Guanglong Ou Junfeng Wang +6 位作者 Hui Xu Keyi Chen Haimei Zheng Bo Zhang Xuelian Sun Tingting Xu Yifa Xiao 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第1期119-131,共13页
A total of 128 Simao pine trees (Pinus kesiya var. langbianensis) from three regions of Pu'er City, Yunnan Province, People's Republic of China, were destructively sampled to obtain tree aboveground biomass (AGB... A total of 128 Simao pine trees (Pinus kesiya var. langbianensis) from three regions of Pu'er City, Yunnan Province, People's Republic of China, were destructively sampled to obtain tree aboveground biomass (AGB). Tree variables such as diameter at breast height and total height, and topographical factors such as altitude, aspect of slope, and degree of slope were recorded. We considered the region and site quality classes as the ran- dom-effects, and the topographic variables as the fixed- effects. We fitted a total of eight models as follows: least- squares nonlinear models (BM), least-squares nonlinear models with the topographic factors (BMT), nonlinear mixed-effects models with region as single random-effects (NLME-RE), nonlinear mixed-effects models with site as single random-effects (NLME-SE), nonlinear mixed-ef- fects models with the two-level nested region and site random-effects (TLNLME), NLME-RE with the fixed-ef- fects of topographic factors (NLMET-RE), NLME-SE with the fixed-effects of topographic factors (NLMET-SE), and TLNLME with the fixed-effects of topographic factors (TLNLMET). The eight models were compared by modelfitting and prediction statistics. The results showed: model fitting was improved by considering random-effects of region or site, or both. The models with the fixed-effects of topographic factors had better model fitting. According to AIC and BIC, the model fitting was ranked as TLNLME 〉 NLMET-RE 〉 NLME-RE.〉 NLMET-SE 〉 TLNLMET 〉 NLME-SE 〉 BMT 〉 BM. The differences among these models for model prediction were small. The model pre- diction was ranked as TLNLME 〉 NLME-RE 〉 NLME- SE 〉 NLMET-RE 〉 NLMET-SE 〉 TLNLMET 〉 BMT 〉 BM. However, all eight models had relatively high prediction precision (〉90 %). Thus, the best model should be chosen based on the available data when using the model to predict individual tree AGB. 展开更多
关键词 Aboveground biomass Mixed-effectsmodels Regional effect Site quality effect topographicfactors Pinus kesiya var. langbianensis
下载PDF
尖峰岭热带山地雨林优势树种白颜树空间分布格局 被引量:46
2
作者 梁爽 许涵 +2 位作者 林家怡 李意德 林明献 《植物生态学报》 CAS CSCD 北大核心 2014年第12期1273-1282,共10页
优势树种对群落的构建和形成起主要作用。该文以海南岛尖峰岭60 hm2样地内重要值第二大的树种白颜树(Gironniera subaequalis)为研究对象,探索其种群分布格局特征,讨论环境异质性、密度依赖死亡、扩散限制等机制在格局形成过程中所起的... 优势树种对群落的构建和形成起主要作用。该文以海南岛尖峰岭60 hm2样地内重要值第二大的树种白颜树(Gironniera subaequalis)为研究对象,探索其种群分布格局特征,讨论环境异质性、密度依赖死亡、扩散限制等机制在格局形成过程中所起的作用。将白颜树10 022个植株分为6个径级,分别归属于幼树、中龄树、成年树三个生活史阶段,采用成对相关函数分析各径级的空间分布特征;双变量成对相关函数和标签关联函数分析不同生活史阶段之间的空间关系;Berman检验方法检验3个地形因子分别对幼树、中龄树、成年树分布影响的显著度。结果表明:白颜树种群内I、II、III、IV径级呈现聚集分布,聚集程度随径级的增加减弱;V和VI径级小尺度上均匀分布,大尺度上以随机分布为主。幼树与中龄树空间正关联;幼树与成年树空间负关联;成年树与中龄树在较小的尺度上负关联,大尺度上微弱正关联。但是不同生活史阶段的个体之间彼此分离,个体间无直接的促进作用。地形因子中,坡度、海拔、凹凸度对幼树的分布影响显著;坡度、凹凸度对中龄树的分布影响显著;仅坡度对成年树的分布影响显著。从现有的空间格局可以推断出环境异质性和密度依赖死亡对格局形成起作用,但是种子的扩散限制对空间格局的影响没有明确地表现出来。 展开更多
关键词 白颜树 点格局分析 径级 种群分布格局 地形因子
原文传递
基于3PGS-MTCLIM模型模拟根河林区火后植被净初级生产力恢复及其影响因子 被引量:9
3
作者 林思美 黄华国 《应用生态学报》 CAS CSCD 北大核心 2018年第11期3712-3722,共11页
林火是大兴安岭林区主要的干扰因子,且对森林生态系统的碳平衡有着重要影响.火干扰强度以及不同地形条件所导致的山地气候差异是影响火后植被净初级生产力恢复过程的主导因素.本研究以内蒙古根河林区为例,使用多时相的Landsat TM遥感数... 林火是大兴安岭林区主要的干扰因子,且对森林生态系统的碳平衡有着重要影响.火干扰强度以及不同地形条件所导致的山地气候差异是影响火后植被净初级生产力恢复过程的主导因素.本研究以内蒙古根河林区为例,使用多时相的Landsat TM遥感数据(2008—2012年)和1980—2010年间的气象资料,结合山地小气候模型MTCLIM与光能利用效率模型3PGS,模拟森林火后植被净初级生产力(NPP)的时空恢复过程,并探讨不同火烧强度和地形因子对NPP恢复进程的影响.结果表明:3PGS-MTCLIM模型能够较准确地在小尺度范围内模拟NPP的空间分布格局,模拟结果与样地具有较好的对应关系,R^2=0.828; 3PGS-MTCLIM模型模拟火后NPP下降百分比在43%~80%,相对于火前NPP水平该区域的平均恢复周期大约为10年;火烧强度对火后恢复具有显著影响,火烧强度越强,NPP恢复所需要的周期越长,火后NPP恢复速度呈现先快后慢的增长趋势;地形因子中,海拔对火后NPP恢复程度的影响最明显,其次为坡度,而坡向的影响最小. 展开更多
关键词 MTCLIM模型 3PGS模型 净初级生产力 火烧强度 地形因子
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部