Axial flow pump is a kind of typical pumps with rotor-stator interaction, thus the measurement of the flow field between impeller and guide vane would facilitate the study of the internal rotor-stator interaction mech...Axial flow pump is a kind of typical pumps with rotor-stator interaction, thus the measurement of the flow field between impeller and guide vane would facilitate the study of the internal rotor-stator interaction mechanism. Through a structural modification of a traditional axial flow pump, the requirements of particle image velocimetry(PIV) measurement are met. Under the condition of opt.0.8Q, the axial vortex is identified between impeller hub and guide vane hub, which is developed into the main flow and to affect the movement when the relative positions of impeller and guide vane at different flow rates are the same. Besides, the development and the dissipation of the tip leakage and the passage vortex in impeller passages are mainly responsible for the difference of the flow field close to the outer rim. As the flow rate decreases, the distribution of the meridional velocities at the impeller outlet becomes more non-uniform and the radial velocity component keeps increasing. The PIV measurement results under the condition of opt.1.0Q indicate that the flow separation and the trailing vortex at the trailing edge of a blade are likely to result in a velocity sudden change in this area, which would dramatically destroy the continuity of the flow field. Moreover, the radial direction of the flow between impeller and guide vane on the measurement plane does not always point from hub to rim. For a certain position, the direction is just from rim to hub, as is affected by the location of the intersection line of the shooting section and the impeller blade on the impeller as well as the angle between the intersection line and the rotating shaft.展开更多
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti...The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.展开更多
基金Project supported by the National Twelfth Five-year Supporting Plan of China(Grant No.2011BAF14B01)the Priority Academic Program Development of Jiangsu Higher Education InstitutionsGraduate innovation program of Jiangsu Province(Grant No.CXLX12_0643)
文摘Axial flow pump is a kind of typical pumps with rotor-stator interaction, thus the measurement of the flow field between impeller and guide vane would facilitate the study of the internal rotor-stator interaction mechanism. Through a structural modification of a traditional axial flow pump, the requirements of particle image velocimetry(PIV) measurement are met. Under the condition of opt.0.8Q, the axial vortex is identified between impeller hub and guide vane hub, which is developed into the main flow and to affect the movement when the relative positions of impeller and guide vane at different flow rates are the same. Besides, the development and the dissipation of the tip leakage and the passage vortex in impeller passages are mainly responsible for the difference of the flow field close to the outer rim. As the flow rate decreases, the distribution of the meridional velocities at the impeller outlet becomes more non-uniform and the radial velocity component keeps increasing. The PIV measurement results under the condition of opt.1.0Q indicate that the flow separation and the trailing vortex at the trailing edge of a blade are likely to result in a velocity sudden change in this area, which would dramatically destroy the continuity of the flow field. Moreover, the radial direction of the flow between impeller and guide vane on the measurement plane does not always point from hub to rim. For a certain position, the direction is just from rim to hub, as is affected by the location of the intersection line of the shooting section and the impeller blade on the impeller as well as the angle between the intersection line and the rotating shaft.
基金supported by National Natural Science Foundation of China (Grant No. 50776021)Doctoral Fund of Ministry of Education of China (Grant No. 20092304110004)
文摘The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.