In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance ...In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...展开更多
This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-ho...This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.展开更多
文摘In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...
基金National Natural Science Foundation of China (10377011)
文摘This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.