The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car* has been investigated by means of sub-microsecond ...The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car* has been investigated by means of sub-microsecond time-resolved absorption spectroscopy both at physiological temperature (295 K) and at cryogenic temperature (77K). Broad and asymmetric T n ←T 1 transient absorption was observed at room temperature following the photo-excitation of Car at 532 nm, which suggests the contribution from various carotenoid compositions having different numbers of conjugated C=C double bonds (Nc=c). The triplet absorption bands of different carotenoids, which superimposed at room temperature, could be clearly distinguished upon decreasing the temperature down to 77 K. At room temperature the shorter-wavelength side of the main Tn04T1 absorption band decayed rapidly to reach a spectral equilibration with a characteristic time constant of ∽1 μs, the same spectral dynamics, however, was not observed at 77 K. The aforementioned spectral dynamics can be explained in terms of the triplet-excitation transfer among heterogeneous carotenoid compositions. Global spectral analysis was applied to the time-resolved spectra at room temperature, which revealed two spectral components peaked at 545 and 565 nm, and assignable to the Tn04 T1 absorption of Cars with Nc=c=11 and Nc=c=13, respectively. Surprisingly, the decay time constant of a shorter-conjugated Car, i.e. 0.72 ?s (aerobic) and 1.36 ?s (anaerobic), is smaller than that of a longer-conjugated Car, i.e. 2.12 us (aerobic) and 3.75 ?s (anaerobic), which is contradictory to the general rule of carotenoids and relative polyenes. The results are explained in terms of triplet-excitation transfer among different types of Cars. It is postulated that two Cars with different conjugation lengths coexist in an α, β-subunit in the LH2 complex.展开更多
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence ...Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.展开更多
In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, pro...In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.展开更多
In the femtosecond laser-produced Cu-plasma, the transient transition dynamics that the excited state 5s4D7/2 via electron-ion recombination transfers to 4p4F9/20 (465.11 nm, Λ1 line) and 4p4D7/20 (529.25 nm, Λ2 ...In the femtosecond laser-produced Cu-plasma, the transient transition dynamics that the excited state 5s4D7/2 via electron-ion recombination transfers to 4p4F9/20 (465.11 nm, Λ1 line) and 4p4D7/20 (529.25 nm, Λ2 line) states are investigated by using the time-resolved spectroscopy. The occupation number and relevant lifetime of the excited state 5s4D7/2, the temporal evolutions of spectral intensities for Λ1 line and Λ2 line emissions are demonstrated to be in direct proportion to the employed laser intensity, which reveals the transient features of transition dynamics clearly differing from that resulted in the traditional collision excitation. Furthermore, some unique characteristics for Λ1 and Λ2 transitions stemming from electron-ion recombination are examined in detail.展开更多
Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to meas...Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.展开更多
The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of th...The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins(via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.展开更多
While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome bef generates only ATP. CEF is thus essential to balance the supply of AT...While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome bef generates only ATP. CEF is thus essential to balance the supply of ATP and NADPH for carbon fixation; however, it remains unclear how the system tunes the relative levels of linear and cyclic flow. Here, we show that PETO, a transmembrane thylakoid phosphoprotein specific of green algae, contributes to the stimulation of CEF when cells are placed in anoxia. In oxic conditions, PETO co-fractionates with other thylakoid proteins involved in CEF (ANR1, PGRL1, FNR). In PETO-knock- down strains, interactions between these CEF proteins are affected. Anoxia triggers a reorganization of the membrane, so that a subpopulation of PSi and cytochrome bsf now co-fractionates with the CEF effectors in sucrose gradients. The absence of PETO impairs this reorganization. Affinity purification identifies ANR1 as a major interactant of PETO. ANR1 contains two ANR domains, which are also found in the N-terminal region of NdhS, the ferredoxin-binding subunit of the plant ferredoxin-plastoquinone oxidoreductase (NDH). We propose that the ANR domain was co-opted by two unrelated CEF systems (PGR and NDH), possibly as a sensor of the redox state of the membrane.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20273077 and 39890390)the State Key Basic Research and Development Plan(Grant No.G1998010100).
文摘The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car* has been investigated by means of sub-microsecond time-resolved absorption spectroscopy both at physiological temperature (295 K) and at cryogenic temperature (77K). Broad and asymmetric T n ←T 1 transient absorption was observed at room temperature following the photo-excitation of Car at 532 nm, which suggests the contribution from various carotenoid compositions having different numbers of conjugated C=C double bonds (Nc=c). The triplet absorption bands of different carotenoids, which superimposed at room temperature, could be clearly distinguished upon decreasing the temperature down to 77 K. At room temperature the shorter-wavelength side of the main Tn04T1 absorption band decayed rapidly to reach a spectral equilibration with a characteristic time constant of ∽1 μs, the same spectral dynamics, however, was not observed at 77 K. The aforementioned spectral dynamics can be explained in terms of the triplet-excitation transfer among heterogeneous carotenoid compositions. Global spectral analysis was applied to the time-resolved spectra at room temperature, which revealed two spectral components peaked at 545 and 565 nm, and assignable to the Tn04 T1 absorption of Cars with Nc=c=11 and Nc=c=13, respectively. Surprisingly, the decay time constant of a shorter-conjugated Car, i.e. 0.72 ?s (aerobic) and 1.36 ?s (anaerobic), is smaller than that of a longer-conjugated Car, i.e. 2.12 us (aerobic) and 3.75 ?s (anaerobic), which is contradictory to the general rule of carotenoids and relative polyenes. The results are explained in terms of triplet-excitation transfer among different types of Cars. It is postulated that two Cars with different conjugation lengths coexist in an α, β-subunit in the LH2 complex.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774099)Science and Technology Commission of Shanghai Municipal (Grant No 06PJ14042)+1 种基金Shanghai Municipal Education Commission (Grant No 06AZ089)the Shanghai Leading Academic Discipline Program (T0104)
文摘Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.
基金supported by the National Natural Science Foundation of China (21090341, 21173213)the National Basic Research Program of China (973 Program, 2009CB220010, 2009CB623507)~~
基金supported by the National Basic Research Program of China(Grant No.2013CB922303)the National Natural Science Foundation of China(Grant No.61334006)
文摘In this work, pronounced oscillations in the time-resolved reflectivity of Heusler alloy Co2MnAl films which are epitaxially grown on Ga As substrates are observed and investigated as a function of film thickness, probe wavelength,external magnetic field and temperature. Our results suggest that the oscillation response at 24.5 GHz results from the coherent phonon generation in Co2MnAl film and can be explained by a propagating strain pulse model. From the probe wavelength dependent oscillation frequency, a sound velocity of(3.85±0.1)×10-3m/s at 800 nm for the epitaxial Co2MnAl film is determined at room temperature. The detected coherent acoustic phonon generation in Co2MnAl reported in this work provides a valuable reference for exploring the high-speed magnetization manipulation via magnetoelastic coupling for future spintronic devices based on Heusler alloy films.
基金Project supported by the National Natural Science Foundation of China(Grant No.51705009)the NSAF of China(Grant No.U1530153)
文摘In the femtosecond laser-produced Cu-plasma, the transient transition dynamics that the excited state 5s4D7/2 via electron-ion recombination transfers to 4p4F9/20 (465.11 nm, Λ1 line) and 4p4D7/20 (529.25 nm, Λ2 line) states are investigated by using the time-resolved spectroscopy. The occupation number and relevant lifetime of the excited state 5s4D7/2, the temporal evolutions of spectral intensities for Λ1 line and Λ2 line emissions are demonstrated to be in direct proportion to the employed laser intensity, which reveals the transient features of transition dynamics clearly differing from that resulted in the traditional collision excitation. Furthermore, some unique characteristics for Λ1 and Λ2 transitions stemming from electron-ion recombination are examined in detail.
基金Supported by the Strategic Research Foundation Grant-aided Project for Private Universities(No.S1411017)a Grant-in-Aid for Exploratory Research(No.25560356)from the Ministry of Education,Culture,Sports,Sciences,and Technology of Japan
文摘Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.
基金supported by the Deutsche Forschungsgemeinschaft (DFG, grant Ni291/10)
文摘The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins(via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.
文摘While photosynthetic linear electron flow produces both ATP and NADPH, cyclic electron flow (CEF) around photosystem I (PSI) and cytochrome bef generates only ATP. CEF is thus essential to balance the supply of ATP and NADPH for carbon fixation; however, it remains unclear how the system tunes the relative levels of linear and cyclic flow. Here, we show that PETO, a transmembrane thylakoid phosphoprotein specific of green algae, contributes to the stimulation of CEF when cells are placed in anoxia. In oxic conditions, PETO co-fractionates with other thylakoid proteins involved in CEF (ANR1, PGRL1, FNR). In PETO-knock- down strains, interactions between these CEF proteins are affected. Anoxia triggers a reorganization of the membrane, so that a subpopulation of PSi and cytochrome bsf now co-fractionates with the CEF effectors in sucrose gradients. The absence of PETO impairs this reorganization. Affinity purification identifies ANR1 as a major interactant of PETO. ANR1 contains two ANR domains, which are also found in the N-terminal region of NdhS, the ferredoxin-binding subunit of the plant ferredoxin-plastoquinone oxidoreductase (NDH). We propose that the ANR domain was co-opted by two unrelated CEF systems (PGR and NDH), possibly as a sensor of the redox state of the membrane.