Cooperative guidance strategy for multiple hypersonic gliding vehicles system with flight constraints and cooperative constraints is investigated.This paper mainly cares about the coordination of the entry glide fligh...Cooperative guidance strategy for multiple hypersonic gliding vehicles system with flight constraints and cooperative constraints is investigated.This paper mainly cares about the coordination of the entry glide flight phase and driving-down phase.Different from the existing results,both the attack time and the attack angle constraints are considered simultaneously.Firstly, for the entry glide flight phase, a two-stage method is proposed to achieve the rapid cooperative trajectories planning, where the control signal corridors are designed based on the quasi-equilibrium gliding conditions.In the first stage, the bank angle curve is optimized to achieve the attack angle coordination.In the second stage, the angle of attack curve is optimized to achieve the attack time coordination.The optimized parameters can be obtained by the secant method.Secondly, for the driving-down phase, the cooperative terminal guidance law is designed where the terminal attack time and attack angle are considered.The guidance law is then transformed into the bank angle and angle of attack commands.The cooperative guidance strategy is summarized as an algorithm.Finally, a numerical simulation example with three hypersonic gliding vehicles is provided for revealing the effectiveness of the acquired strategy and algorithm.展开更多
In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering th...In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61922008,61973013,61873011,61803014)the Innovation Zone Project of China(No.18-163-00-TS-001-001-34)+3 种基金the Beijing Natural Science Foundation of China(No.4182035)the Young Elite Scientists Sponsorship Program by CAST of China(No.017QNRC001)the Aeronautical Science Foundation of China(No.20170151001)the Special Research Project of Chinese Civil Aircraft,the State Key Laboratory of Intelligent Control and Decision of Complex Systems,the Key Laboratory of System Control and Information Processing,and the Shananxi Key Laboratory of Integrated and Intelligent Navigation(No.SKLIIN-20180105)。
文摘Cooperative guidance strategy for multiple hypersonic gliding vehicles system with flight constraints and cooperative constraints is investigated.This paper mainly cares about the coordination of the entry glide flight phase and driving-down phase.Different from the existing results,both the attack time and the attack angle constraints are considered simultaneously.Firstly, for the entry glide flight phase, a two-stage method is proposed to achieve the rapid cooperative trajectories planning, where the control signal corridors are designed based on the quasi-equilibrium gliding conditions.In the first stage, the bank angle curve is optimized to achieve the attack angle coordination.In the second stage, the angle of attack curve is optimized to achieve the attack time coordination.The optimized parameters can be obtained by the secant method.Secondly, for the driving-down phase, the cooperative terminal guidance law is designed where the terminal attack time and attack angle are considered.The guidance law is then transformed into the bank angle and angle of attack commands.The cooperative guidance strategy is summarized as an algorithm.Finally, a numerical simulation example with three hypersonic gliding vehicles is provided for revealing the effectiveness of the acquired strategy and algorithm.
基金Project(20180608005600843855-19)supported by the International Graduate Exchange Program of Beijing Institute of Technology,China。
文摘In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.