Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the op...Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.展开更多
An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surf...An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.展开更多
基金Project supported jointly by the Foundation of He'nan Educational Committee(15A150071)
文摘Ce-TiO2/CA(carbon aerogel) electrode was prepared by sol impregnation approach. The XRD(X-ray diffraction) and Raman spectra reveal that the TiO2 is anatase. The UV-vis diffuse reflectance spectra show that the optical absorption edge for Ce-TiO_2/CA is red-shifted to 535 nm compared with TiO_2/CA. Under visible light irradiation, the photocurrent density increment on Ce-TiO_2/CA is 75 times that on Ce-TiO_2/FTO(fluorine-doped tin oxide). The electrochemical impedance spectroscopy reveals that the conductivity of CeTiO_2/CA is much better than the Ce-TiO_2/FTO. Furthermore, the Ce-TiO_2/CA can be used to the highest electrosorptive photodegradation for 4-chlorophenol wastewater degradation, which is ascribed predominantly to the efficient reduction of electron-hole pair recombination in the photocatalysts.
基金Funded by the National Natural Science Foundation of China(NSFC)(Nos.51278073,51308079 and 51408073)
文摘An ambient pressure synthesis of SiO2/TiO2 binary aerogel was prepared through the low-cost precursors of titanium tetrachloride(TiCl4) and sodium silicate(Na2O·nSiO2).After gelation,solvent exchange and surface modification were performed simultaneously and the modified gel was finally dried under ambient pressure.Microstructural analyses by transmission electron microscope(TEM) indicate that fabricated SiO2/TiO2 aerogel composite shows similar sponge-like nanostructure as silica aerogel,and the Brunauer-EmmettTeller(BET) analysis shows that the specific surface area of the composite reaches 605 m^2/g,and the average pore size is 9.7 nm.Such binary aerogel exhibits significant photocatalytic performance in this paper for treating model pollutant of methyl orange(MO),and the decolorizing efficiency of MO is detected as 84.9%after 210 mins exposure to UV light irradiation.Degraded gel suspends in the water so as to separate from solution for reuse,and after 4 times recycling,70%degradation efficiency can be easily reached when composite catalyzed system is exposed for 210 mins under UV irradiation.