Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for ...Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for Pd n (n=1-5) clusters adsorbed on TiO2 (110) surface based on DFT-GGA calculations utilizing periodic supercell models.A single Pd adatom on the defect-free surface prefers to adsorb at a hollow site bridging a protruded oxygen and a five-fold titanium atom along the [110] direction,while Pd dimer is located on the channels with the Pd-Pd bond parallel to the surface.According to the transition states (TSs) search,the adsorbed Pd trimer tends to triangular growth mode,rather than linear mode,while the Pd4 and Pd5 clusters prefer three-dimensional (3D) models.However,the oxygen vacancy has almost no influence on the promotion of Pd n cluster nucleation.Additionally,of particular significance is that the Pd-TiO2 interaction is the main driving force at the beginning of Pd nucleation,whereas the Pd-Pd interaction gets down to control the growth process of Pd cluster as the cluster gets larger.It is hoped that our theoretical study would shed light on further designing high-performance TiO2 supported Pd-based catalysts.展开更多
Titanium dioxide(TiO2) is one of the most widely studied transition metal oxides, especially for its unique performances in heterogeneous photocatalysis. Different phases of TiO2 have been found to exhibit different...Titanium dioxide(TiO2) is one of the most widely studied transition metal oxides, especially for its unique performances in heterogeneous photocatalysis. Different phases of TiO2 have been found to exhibit different photo-activities, though the origins are still not fully understood. In this work, we use the density functional theory(DFT) calculations, corrected by on-site Coulomb and long-range dispersion interactions, to study the adsorptions of nitric oxide(NO) and oxygen(O2) molecules on the clean and hydrogenated anatase TiO2(101) surfaces. We also compare the detailed calculated results regarding their structural, energetic and electronic properties with those obtained at rutile TiO2(110). It has been found that the behaviors of the surface localized electrons being transferred from adsorbed H, as well as the adsorption behaviors of NO and O2 are quite different at the two surfaces, which can be attributed to their characteristic local bonding structures around the surface hydroxyl. These results may also help explain the different photocatalytic activities of these two main facets of anatase and rutile TiO2展开更多
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were ...The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.展开更多
The interaction of reactants with catalysts has always been an important subject for catalytic reactions.As a promising catalyst with versatile applications,titania has been intensively studied for decades.In this wor...The interaction of reactants with catalysts has always been an important subject for catalytic reactions.As a promising catalyst with versatile applications,titania has been intensively studied for decades.In this work we have investigated the role of bridge bonded oxygen vacancy(O_(v))in methyl groups and carbon monoxide(CO)adsorption on rutile TiO_(2)(110)(R-TiO_(2)(110))with the temperature programmed desorption technique.The results show a clear different tendency of the desorption of methyl groups adsorbed on bridge bonded oxygen(O_(b)),and CO molecules on the five coordinate Ti^(4+)sites(Ti_(5c))as the Ovconcentration changes,suggesting that the surface defects may have crucial influence on the absorption of species on different sites of R-TiO_(2)(110).展开更多
基金supported by the National Natural Science Foundation of China (90922022)the Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology (FSKLCC1110)the Natural Science Foundation of Fujian Province,China (2012J01032,2012J01041)
文摘Oxide-supported transition metal systems have been the subject of enormous interest due to the improvement of catalytic properties relative to the separate metal.Thus in this paper,we embark on a systematic study for Pd n (n=1-5) clusters adsorbed on TiO2 (110) surface based on DFT-GGA calculations utilizing periodic supercell models.A single Pd adatom on the defect-free surface prefers to adsorb at a hollow site bridging a protruded oxygen and a five-fold titanium atom along the [110] direction,while Pd dimer is located on the channels with the Pd-Pd bond parallel to the surface.According to the transition states (TSs) search,the adsorbed Pd trimer tends to triangular growth mode,rather than linear mode,while the Pd4 and Pd5 clusters prefer three-dimensional (3D) models.However,the oxygen vacancy has almost no influence on the promotion of Pd n cluster nucleation.Additionally,of particular significance is that the Pd-TiO2 interaction is the main driving force at the beginning of Pd nucleation,whereas the Pd-Pd interaction gets down to control the growth process of Pd cluster as the cluster gets larger.It is hoped that our theoretical study would shed light on further designing high-performance TiO2 supported Pd-based catalysts.
基金supported by the National Natural Science Foundation of China (90922022)Natural Science Foundation of Fujian Province,China(2012101032,2012101041)Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology,China (FSKLCC1110)~~
基金financial support from the National Natural Science Foundation of China (Nos. 21421004, 21573067, 91545103)Program of Shanghai Academic Research Leader (No. 17XD1401400)
文摘Titanium dioxide(TiO2) is one of the most widely studied transition metal oxides, especially for its unique performances in heterogeneous photocatalysis. Different phases of TiO2 have been found to exhibit different photo-activities, though the origins are still not fully understood. In this work, we use the density functional theory(DFT) calculations, corrected by on-site Coulomb and long-range dispersion interactions, to study the adsorptions of nitric oxide(NO) and oxygen(O2) molecules on the clean and hydrogenated anatase TiO2(101) surfaces. We also compare the detailed calculated results regarding their structural, energetic and electronic properties with those obtained at rutile TiO2(110). It has been found that the behaviors of the surface localized electrons being transferred from adsorbed H, as well as the adsorption behaviors of NO and O2 are quite different at the two surfaces, which can be attributed to their characteristic local bonding structures around the surface hydroxyl. These results may also help explain the different photocatalytic activities of these two main facets of anatase and rutile TiO2
文摘The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.
基金supported by the National Natural Science Foundation of China (No.21973084 and No.21803056)。
文摘The interaction of reactants with catalysts has always been an important subject for catalytic reactions.As a promising catalyst with versatile applications,titania has been intensively studied for decades.In this work we have investigated the role of bridge bonded oxygen vacancy(O_(v))in methyl groups and carbon monoxide(CO)adsorption on rutile TiO_(2)(110)(R-TiO_(2)(110))with the temperature programmed desorption technique.The results show a clear different tendency of the desorption of methyl groups adsorbed on bridge bonded oxygen(O_(b)),and CO molecules on the five coordinate Ti^(4+)sites(Ti_(5c))as the Ovconcentration changes,suggesting that the surface defects may have crucial influence on the absorption of species on different sites of R-TiO_(2)(110).