To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were ...To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated.The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm·s^(-1) under the temperature gradients of 15-20 K·mm^(-1), and the primary phase is transformed into an α phase at relatively higher growth rates(V >20 μm·s^(-1)). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm·s^(-1) under a temperature gradient of 15 K·mm^(-1). The increase of temperature gradient to 20 K·mm^(-1) can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as L L→β L+β L+β→αα+β_R β→ααα→γα+γα→α_2+γγ_R+(α_2+γ), in which β_R and γ_R mean the residual β and展开更多
A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness...A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.展开更多
The microstructures and phases of ternary TiAl+Nb alloys containing 50-60 at.-%Al, 0-21 at.-%Nb have been studied using transmission electron microscopy (TEM) and X-ray powder diffraction. The phases present in the al...The microstructures and phases of ternary TiAl+Nb alloys containing 50-60 at.-%Al, 0-21 at.-%Nb have been studied using transmission electron microscopy (TEM) and X-ray powder diffraction. The phases present in the alloys and their distribution were found to be a sensitive function of composition. The phase relations between γ-TiAl and γ1 (a new ordered ternary intermetallic compound based on γ-TiAl) were determined. Essentially single γ phase was determined for alloys with relativety low Nb content (≤10 at.-%Nb). the γ1 phase was determined to exist in the composition range containing higher Nb contents (15-21 at.-%Nb). Between γ and γ1 phases, with intermediate Nb contents there is a transitional phase γ1 (a superstructure of γ-TiAl). As for the influence of Al concentration on the phase relations. the γ1 phase was inclined to form in the alloys with relatively high Al contents. The ordering transformation of γ, to γ1 is a continuous ordering process and the transition may be second order.展开更多
The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor ...The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.展开更多
Intermetallic Ti-xAl-8Nb(x = 41,43,45,47,49;at%) alloys were solidified unidirectionally upwards with a constant temperature gradient of G=3.8 K·mm^(-1)at wide range of growth rates of v=10-400 μm·s^(-...Intermetallic Ti-xAl-8Nb(x = 41,43,45,47,49;at%) alloys were solidified unidirectionally upwards with a constant temperature gradient of G=3.8 K·mm^(-1)at wide range of growth rates of v=10-400 μm·s^(-1)using a Bridgman directional solidification(DS) furnace.Microstructural parameters including the primary dendrite arm spacing(λ_1),secondary dendrite arm spacing(λ_2),dendrite tip radius(R) and mushy zone depth(d) were measured statistically.The values of λ_1,λ_2,R and d decrease as the growth rate increases for a given composition(x).The values of λ_1,λ_2,R and v increase with the increase in x value,while the value of d firstly increases and then decreases with the increase in x value for a given v.The relationships between λ_1,λ_2 and R were analyzed by the linear regression.The average growth rate exponent of λ_1 is 0.29,which is in accordance with the previous experimental observations,and that of λ_2 is close to the previous experimental results,while those of R and d are lower than the results in other alloy systems.In addition,theoretical models for λ_1,λ_2 and R were compared with the experimental observations,and a comparison of the present experimental results with the theoretical models and previous experimental results was also made.展开更多
A fine-grained TiAl alloy with a composition of Ti-45Al-5Nb-1.5Cr-0.2W (mole fraction, %) with multiphases was prepared by spark plasma sintering (SPS) and heat-treating at 1 100 ℃ for 48 h. The relationship amon...A fine-grained TiAl alloy with a composition of Ti-45Al-5Nb-1.5Cr-0.2W (mole fraction, %) with multiphases was prepared by spark plasma sintering (SPS) and heat-treating at 1 100 ℃ for 48 h. The relationship among sintering temperature, microstructure and fracture toughness were investigated by X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and mechanical testing. The results show that microstructure of the bulk alloy depends on the sintering temperature strongly, and the main phase TiAl and few phases Ti3Al and niobium solid solution (Nbss) are observed in the SPS bulk samples. In the heat-treatment condition, the lamellar and Nbss phase can provide significant toughening by plastic strengthening, interface decohension, crack branch and crack bridge mechanisms. The fracture mode of the SPS TiAl composite samples is intergranular rupture and cleavage fracture.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51331005 and 51425402)
文摘To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated.The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm·s^(-1) under the temperature gradients of 15-20 K·mm^(-1), and the primary phase is transformed into an α phase at relatively higher growth rates(V >20 μm·s^(-1)). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm·s^(-1) under a temperature gradient of 15 K·mm^(-1). The increase of temperature gradient to 20 K·mm^(-1) can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as L L→β L+β L+β→αα+β_R β→ααα→γα+γα→α_2+γγ_R+(α_2+γ), in which β_R and γ_R mean the residual β and
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2008AA03A233) supported by the Hi-tech Research and Development Program of China
文摘A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.
文摘The microstructures and phases of ternary TiAl+Nb alloys containing 50-60 at.-%Al, 0-21 at.-%Nb have been studied using transmission electron microscopy (TEM) and X-ray powder diffraction. The phases present in the alloys and their distribution were found to be a sensitive function of composition. The phase relations between γ-TiAl and γ1 (a new ordered ternary intermetallic compound based on γ-TiAl) were determined. Essentially single γ phase was determined for alloys with relativety low Nb content (≤10 at.-%Nb). the γ1 phase was determined to exist in the composition range containing higher Nb contents (15-21 at.-%Nb). Between γ and γ1 phases, with intermediate Nb contents there is a transitional phase γ1 (a superstructure of γ-TiAl). As for the influence of Al concentration on the phase relations. the γ1 phase was inclined to form in the alloys with relatively high Al contents. The ordering transformation of γ, to γ1 is a continuous ordering process and the transition may be second order.
基金National Natural Science Foundation of China (90405016)
文摘The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.
基金financially supported by the National Natural Science Foundation of China(Nos.51271016 and U1204508)the National Basic Research Program of China(No.2011CB605500)+1 种基金the Doctoral Program of Higher Education of China(No.20120006120042)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-062A2)
文摘Intermetallic Ti-xAl-8Nb(x = 41,43,45,47,49;at%) alloys were solidified unidirectionally upwards with a constant temperature gradient of G=3.8 K·mm^(-1)at wide range of growth rates of v=10-400 μm·s^(-1)using a Bridgman directional solidification(DS) furnace.Microstructural parameters including the primary dendrite arm spacing(λ_1),secondary dendrite arm spacing(λ_2),dendrite tip radius(R) and mushy zone depth(d) were measured statistically.The values of λ_1,λ_2,R and d decrease as the growth rate increases for a given composition(x).The values of λ_1,λ_2,R and v increase with the increase in x value,while the value of d firstly increases and then decreases with the increase in x value for a given v.The relationships between λ_1,λ_2 and R were analyzed by the linear regression.The average growth rate exponent of λ_1 is 0.29,which is in accordance with the previous experimental observations,and that of λ_2 is close to the previous experimental results,while those of R and d are lower than the results in other alloy systems.In addition,theoretical models for λ_1,λ_2 and R were compared with the experimental observations,and a comparison of the present experimental results with the theoretical models and previous experimental results was also made.
基金Project(2011CB605505)supported by the National Key Basic Research Program of ChinaProject(2008AA03A233)supported by the National High Technology Research and Development Program of China
文摘A fine-grained TiAl alloy with a composition of Ti-45Al-5Nb-1.5Cr-0.2W (mole fraction, %) with multiphases was prepared by spark plasma sintering (SPS) and heat-treating at 1 100 ℃ for 48 h. The relationship among sintering temperature, microstructure and fracture toughness were investigated by X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and mechanical testing. The results show that microstructure of the bulk alloy depends on the sintering temperature strongly, and the main phase TiAl and few phases Ti3Al and niobium solid solution (Nbss) are observed in the SPS bulk samples. In the heat-treatment condition, the lamellar and Nbss phase can provide significant toughening by plastic strengthening, interface decohension, crack branch and crack bridge mechanisms. The fracture mode of the SPS TiAl composite samples is intergranular rupture and cleavage fracture.