往 Fe C Si B激光熔覆专用合金粉末中加入 Ti粉 ,结果表明 ,加 Ti粉后熔覆层与基体润湿性非常好 ,并且裂纹倾向大大减少。控制 Ti的加入量 ,可以获得组织均匀的细化的过共晶、共晶和亚共晶熔覆层 ,整个熔覆层弥散、均匀分布着大量硬颗...往 Fe C Si B激光熔覆专用合金粉末中加入 Ti粉 ,结果表明 ,加 Ti粉后熔覆层与基体润湿性非常好 ,并且裂纹倾向大大减少。控制 Ti的加入量 ,可以获得组织均匀的细化的过共晶、共晶和亚共晶熔覆层 ,整个熔覆层弥散、均匀分布着大量硬颗粒 ,而硬颗粒的数量、尺寸及形状随 Ti元素加入量的不同而有所改变 ,熔覆层显微硬度分布也非常均匀。展开更多
To improve the oxidation and graphitization resistances of the polycrystalline diamond(PCD), Ti coating was deposited on the diamond powders via magnetic sputtering method, which achieved a uniform Ti C protection bar...To improve the oxidation and graphitization resistances of the polycrystalline diamond(PCD), Ti coating was deposited on the diamond powders via magnetic sputtering method, which achieved a uniform Ti C protection barrier in PCD during the sintering process. The phase compositions, microstructures and thermal stability of Ti-PCD were characterized by X-ray diffraction(XRD), Auger electron spectroscopy(AES),scanning electron microscopy(SEM) and thermal gravimetric-differential scanning calorimetry(TG-DSC).The results demonstrate that the oxidation and graphitization resistances of PCD are strengthened due to the existence of Ti C phase, which acts as an effective inhibitor. The as-received inhibitor delays the oxidation and graphitization of PCD, elevating their initial temperature by ~50°C and ~100°C, respectively. During the annealing treatment of Ti-PCD, the priory oxidation of Ti C, which produces Ti O2 as an oxygen barrier, postpones the diamond oxide. Moreover, the Ti C barrier also protects diamond grains from direct contact with cobalt, thus a lower cobalt-catalytic graphitization, and yields to an improved graphitization resistance of PCD. The enhanced oxidation and graphitization resistances of PCD are of significant importance for practical applications to elevated temperatures.展开更多
In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that ...In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51875537,41572359 and 51375466)the Beijing Natural Science Foundation(No.3172026)+2 种基金the Beijing Nova program(No.Z171100001117059)the Fundamental Research Funds for the Central University(No.2652018094)the Natural Science Foundation of Ningxia Province(No.2018AAC03200)。
文摘To improve the oxidation and graphitization resistances of the polycrystalline diamond(PCD), Ti coating was deposited on the diamond powders via magnetic sputtering method, which achieved a uniform Ti C protection barrier in PCD during the sintering process. The phase compositions, microstructures and thermal stability of Ti-PCD were characterized by X-ray diffraction(XRD), Auger electron spectroscopy(AES),scanning electron microscopy(SEM) and thermal gravimetric-differential scanning calorimetry(TG-DSC).The results demonstrate that the oxidation and graphitization resistances of PCD are strengthened due to the existence of Ti C phase, which acts as an effective inhibitor. The as-received inhibitor delays the oxidation and graphitization of PCD, elevating their initial temperature by ~50°C and ~100°C, respectively. During the annealing treatment of Ti-PCD, the priory oxidation of Ti C, which produces Ti O2 as an oxygen barrier, postpones the diamond oxide. Moreover, the Ti C barrier also protects diamond grains from direct contact with cobalt, thus a lower cobalt-catalytic graphitization, and yields to an improved graphitization resistance of PCD. The enhanced oxidation and graphitization resistances of PCD are of significant importance for practical applications to elevated temperatures.
基金financially supported by National Natural Science Foundation of China (No.50874076 and No.51074110)the Scientist Serving Enterprise Action Plan from Ministry of Science and Technology (No.2009GJF00030)
文摘In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.