Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review ex...Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.展开更多
Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of ho...Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of how smoking promotes thrombosis is not fully understood. Thrombosis is associated with the imbalance of the coagulant system due to endothelial dysfunction. As a vital anticoagulation cofactor, thrombomodulin (TM) located on the endothelial cell surface is able to regulate intravascular coagulation by binding to thrombin, and the binding results in thrombosis inhibition. This work focused on the effects of cigarette smoke extract (CSE) on TM-thrombin binding by atomic force microscopy (AFM) based single-molecule force spectroscopy. The results from both in vitro and live-cell experiments indicated that CSE could notably reduce the binding probability of TM and thrombin. This study provided a new approach and new evidence for studying the mechanism of thrombosis triggered by cigarette smoking.展开更多
文摘Inflammation and coagulation are so tightly linked that the cytokine storm which accompanies the development of sepsis initiates thrombin activation and the development of an intravascular coagulopathy. This review examines the interaction between the inflammatory and coagulation cascades, as well as the role of endogenous anticoagulants in regulating this interaction and dampening the activity of both pathways. Clinical trials attempting to improve outcomes in patients with severe sepsis by inhibiting thrombin generation with heparin and or endogenous anticoagulants are reviewed. In general, these trials have failed to demonstrate that anticoagulant therapy is associated with improvement in mortality or morbidity. While it is possible that selective patients who are severelyill with a high expected mortality may be shown to benefit from such therapy, at the present time none of these anticoagulants are neither approved nor can they be recommended for the treatment of sepsis.
基金supported by the National Basic Research Program of China(Grant No.2011CB911001)National Natural Science Foundation of China(Grant Nos.21127901 and 21121063)Chinese Academy of Sciences
文摘Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of how smoking promotes thrombosis is not fully understood. Thrombosis is associated with the imbalance of the coagulant system due to endothelial dysfunction. As a vital anticoagulation cofactor, thrombomodulin (TM) located on the endothelial cell surface is able to regulate intravascular coagulation by binding to thrombin, and the binding results in thrombosis inhibition. This work focused on the effects of cigarette smoke extract (CSE) on TM-thrombin binding by atomic force microscopy (AFM) based single-molecule force spectroscopy. The results from both in vitro and live-cell experiments indicated that CSE could notably reduce the binding probability of TM and thrombin. This study provided a new approach and new evidence for studying the mechanism of thrombosis triggered by cigarette smoking.