常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频...常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频分量重构得到降噪信号,这种方法易失掉高频分量中的有效信号。本文提出一种改进的EEMD降噪算法,应用于时域航空电磁信号的处理。该方法结合时域航空电磁信号的衰减特性,将信号EEMD分解后得到本征模态分量,其中包含信号和噪声,经Savitzky-Golay平滑滤波,再将高频部分进行阈值去噪,最后得到干净的本征模态分量进行重构。实验结果表明在输入信号信噪比小于等于15 d B的情况下,输出信噪比能够提高12 d B左右,在抑制噪声的同时保留了更多有效信息。展开更多
文摘常规降噪方法在应用于时域航空电磁信号降噪时需根据噪声情况人为进行参数调整,自适应性较差。总体经验模态分解(EEMD)算法对非线性、非平稳信号处理具有良好的自适应特性,传统的EEMD算法进行噪声抑制是将高频本征模态分量滤除,将低频分量重构得到降噪信号,这种方法易失掉高频分量中的有效信号。本文提出一种改进的EEMD降噪算法,应用于时域航空电磁信号的处理。该方法结合时域航空电磁信号的衰减特性,将信号EEMD分解后得到本征模态分量,其中包含信号和噪声,经Savitzky-Golay平滑滤波,再将高频部分进行阈值去噪,最后得到干净的本征模态分量进行重构。实验结果表明在输入信号信噪比小于等于15 d B的情况下,输出信噪比能够提高12 d B左右,在抑制噪声的同时保留了更多有效信息。