Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and stor...Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and storage,which causes the risk of other loquats being infected,affecting the selling price.Materials and Methods In this paper,a method combining band radio image with an improved three-phase level set segmentation algorithm(ITPLSSM)is proposed to achieve high accuracy,rapid,and non-destructive detection of skin defects of loquats.Principal component analysis(PCA)was used to find the characteristic wavelength and PC images to distinguish four types of skin defects.The best band ratio image based on characteristic wavelength was determined.Results The band ratio image(Q782/944)based on PC2 image is the best segmented image.Based on pseudo-color image enhancement,morphological processing,and local clustering criteria,the band ratio image(Q782/944)has better contrast between defective and normal areas in loquat.Finally,the ITPLSSM was used to segment the processing band ratio image(Q782/944),with an accuracy of 95.28%.Conclusions The proposed ITPLSSM method is effective in distinguishing four types of skin defects.Meanwhile,it also effectively segments images with intensity inhomogeneities.展开更多
基金the financial support provided by the National Natural Science Foundation of China(No.12103019)National Science and Technology Award Backup Project Cultivation Plan(No.20192AEI91007),China。
文摘Background and objectives Skin defects are one of the primary problems that occur in post-harvest grading and processing of loquats.Skin defects lead to the loquat being easily destroyed during transportation and storage,which causes the risk of other loquats being infected,affecting the selling price.Materials and Methods In this paper,a method combining band radio image with an improved three-phase level set segmentation algorithm(ITPLSSM)is proposed to achieve high accuracy,rapid,and non-destructive detection of skin defects of loquats.Principal component analysis(PCA)was used to find the characteristic wavelength and PC images to distinguish four types of skin defects.The best band ratio image based on characteristic wavelength was determined.Results The band ratio image(Q782/944)based on PC2 image is the best segmented image.Based on pseudo-color image enhancement,morphological processing,and local clustering criteria,the band ratio image(Q782/944)has better contrast between defective and normal areas in loquat.Finally,the ITPLSSM was used to segment the processing band ratio image(Q782/944),with an accuracy of 95.28%.Conclusions The proposed ITPLSSM method is effective in distinguishing four types of skin defects.Meanwhile,it also effectively segments images with intensity inhomogeneities.