This paper studies the thermoluminescence (TL) dating of the ancient por- celain using a regression method of saturation exponential in the pre-dose technique. The experimental results show that the measured errors ar...This paper studies the thermoluminescence (TL) dating of the ancient por- celain using a regression method of saturation exponential in the pre-dose technique. The experimental results show that the measured errors are 15% (±1σ) for the paleodose and 17% (±1σ) for the annual dose respectively, and the TL age error is 23% (±1σ) in this method. The larger Chinese porcelains from the museum and the nation-wide collectors have been dated by this method. The results show that the certainty about the authenticity testing is larger than 95%, and the measurable porcelains make up about 95% of the por- celain dated. It is very successful in discrimination for the imitations of ancient Chinese porcelains. This paper describes the measured principle and method for the paleodose of porcelains. The TL ages are dated by this method for the 39 shards and porcelains from past dynasties of China and the detailed data in the measurement are reported.展开更多
Sources, components and calibration of paleodose were studied for proper evalua- tion of the paleodose of porcelain in thermoluminescence (TL) dating. In the TL dating of porcelain using the pre-dose technique, the β...Sources, components and calibration of paleodose were studied for proper evalua- tion of the paleodose of porcelain in thermoluminescence (TL) dating. In the TL dating of porcelain using the pre-dose technique, the β dose from the internal natural radiation in the body of porcelain is the first, the environmental dose the second, and the α dose negligible. Sample thickness of 0.2―0.5 mm was used in the paleodose calibration. For a porcelain sample of such thickness, the distribu- tion of β dose inside the sample was nonlinear when the sample (aluminium re- places porcelain in this experiment) was irradiated by a laboratory 90Sr-90Y β source. Therefore, the β dose used was only an average value. A distribution curve of β dose and the calculation of average β dose in the sample were obtained, according to the build-up and attenuation effects of β dose in the sample. The results showed that a sample thickness of 200 μm resulted in an average dose increment of about 4% compared to the surface whereas for a sample with a thickness of 400 μm, the average dose reduced by the same percentage, and that for a sample of 300 μm in thickness the average dose is equal to surface dose approximately. The average β dose in samples with various thickness can be obtained by the provided equations.展开更多
文摘This paper studies the thermoluminescence (TL) dating of the ancient por- celain using a regression method of saturation exponential in the pre-dose technique. The experimental results show that the measured errors are 15% (±1σ) for the paleodose and 17% (±1σ) for the annual dose respectively, and the TL age error is 23% (±1σ) in this method. The larger Chinese porcelains from the museum and the nation-wide collectors have been dated by this method. The results show that the certainty about the authenticity testing is larger than 95%, and the measurable porcelains make up about 95% of the por- celain dated. It is very successful in discrimination for the imitations of ancient Chinese porcelains. This paper describes the measured principle and method for the paleodose of porcelains. The TL ages are dated by this method for the 39 shards and porcelains from past dynasties of China and the detailed data in the measurement are reported.
文摘Sources, components and calibration of paleodose were studied for proper evalua- tion of the paleodose of porcelain in thermoluminescence (TL) dating. In the TL dating of porcelain using the pre-dose technique, the β dose from the internal natural radiation in the body of porcelain is the first, the environmental dose the second, and the α dose negligible. Sample thickness of 0.2―0.5 mm was used in the paleodose calibration. For a porcelain sample of such thickness, the distribu- tion of β dose inside the sample was nonlinear when the sample (aluminium re- places porcelain in this experiment) was irradiated by a laboratory 90Sr-90Y β source. Therefore, the β dose used was only an average value. A distribution curve of β dose and the calculation of average β dose in the sample were obtained, according to the build-up and attenuation effects of β dose in the sample. The results showed that a sample thickness of 200 μm resulted in an average dose increment of about 4% compared to the surface whereas for a sample with a thickness of 400 μm, the average dose reduced by the same percentage, and that for a sample of 300 μm in thickness the average dose is equal to surface dose approximately. The average β dose in samples with various thickness can be obtained by the provided equations.