A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law ...A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law of thermodynamics for a harmonic system and the time evolution of the system are obtained. The general expressions for several important parameters, such as the work, efficiency, power output, and rate of entropy production are derived. By means of numerical analysis, the optimally operating regions and the optimal values of performance parameters of the cycle are determined under the condition of maximum power output. At last, some special cases, such as high temperature limit and frictionless case, are dis-cussed in brief.展开更多
By using finite-time thermodynamics, the optimal performance of a Stirling heat engine with thermal resistance, heat leak and regenerative loss is studied. The fundamental optimal relation is derived and the bounds of...By using finite-time thermodynamics, the optimal performance of a Stirling heat engine with thermal resistance, heat leak and regenerative loss is studied. The fundamental optimal relation is derived and the bounds of power output and efficiency are deduced from it. Then the significance of the relation and bounds are revealed. The results obtained here may provide some new theoretical guides for the optimal design of Stirling heat engines.展开更多
A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HE...A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HEXs). Both internal losses and external heat transfer irreversibilities are considered in the model. The heating capacity and the coefficient of performance(COP) of the device are improved through numerical optimization,which is of great significance to the application of the device. The distribution of the total TE element number among four TE devices and the distribution of the total external heat conductance among the four external HEXs are optimized. The results show that both the reservoir temperatures of TTEG and TTEH have significant influences on the performance and the corresponding optimum parameters of the device. The COP can reach 0.14 after optimization when the temperature difference of heat source is 150 K and the temperature difference of heating is 10 K.展开更多
This paper has studied the thermodynamic performance of a thermal Brownian heat pump,which consists of Brownian particles moving at a periodic sawtooth potential with external forces and contacting with the alternatin...This paper has studied the thermodynamic performance of a thermal Brownian heat pump,which consists of Brownian particles moving at a periodic sawtooth potential with external forces and contacting with the alternating hot and cold reservoirs along the space coordinate.The heat flows driven by both potential and kinetic energies are taken into account.The analytical expressions for the heating load,coefficient of performance(COP) and power input of the Brownian heat pump are derived and the performance characteristics are obtained by numerical calculations.It is shown that due to the heat flow via the change of kinetic energy of the particles,the Brownian heat pump is always irreversible and the COP can never attain the Carnot COP.The study has also investigated the influences of the operating parameters,i.e.the external force,barrier height of the potential,asymmetry of the sawtooth potential and temperature ratio of the heat reservoirs,on the performance of the Brownian heat pump.The effective regions of external force and barrier height of the potential in which the Brownian motor can operates as a heat pump are determined.The results show that the performance of the Brownian heat pump greatly depends on the parameters;if the parameters are properly chosen,the Brownian heat pump may be controlled to operate in the optimal regimes.展开更多
Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is establ...Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is established with involving Thomson effect by fitting method of variable physical parameters of TE materials.Taking total number of TE elements as constraint,influences of number distributions of TE elements on three device performance indictors,that is,cooling load,maximum COP and maximum exergetic efficiency,are analyzed.Three number distributions of TE elements are optimized with three maximum performance indictors as the objectives,respectively.Influences of hot-junction temperature of TTEG and coldjunction temperature of TTEC on optimization results are analyzed,and difference between optimization results corresponding to three performance indicators are studied.Optimal performance intervals and optimal variable intervals are provided.Influences of Thomson effect on three general performance indicators,three optimal performance indicators and optimal variables are comparatively discussed.Thomson effect reduces three general performance indicators and three optimal performance indicators of device.When hot-and cold-junction temperatures of TTEG and TTEC are 450,305,325 and 295 K,respectively,Thomson effect reduced maximum cooling load,maximum COP and maximum exergetic efficiency from 9.528 W,9.043×10^(-2)and2.552%to 6.651 W,6.286×10^(-2)and 1.752%,respectively.展开更多
Energy systems with multi-energy product outputs driven by renewable energy sources are becoming increasingly popular.To satisfy the diversification of energy use forms in China,this study proposes a new thermochemica...Energy systems with multi-energy product outputs driven by renewable energy sources are becoming increasingly popular.To satisfy the diversification of energy use forms in China,this study proposes a new thermochemical energy system driven by solar energy and biomass for natural gas and power production.In this system,syngas from solar-driven biomass gasification is used to synthesize natural gas,whereas the unreacted syngas is burned directly in a combined cycle for power generation.To adjust the production capacity of the system,a shift reaction was used to change the H_(2)/CO ratio in the syngas.The biomass gasification model was experimentally verified,and the thermodynamic performance of the system was studied numerically.The results showed that the production rate of natural gas,with a heat value of 714.88 k J/mol,was approximately 0.306 m^(3)-SNG/kg-bio,and the primary energy efficiency was 47%.The new system showed a good energy-saving potential of 15.29%.Parametric analysis indicated that an increase in the gasification temperature led to a reduction in the natural gas production and an increase in the power output of the system,with a maximum energy efficiency of 66.72%at gasification temperature of 1050°C.With an increase in the syngas share entering the transfer reactor,the natural gas production rate and energy efficiency of the system were improved with an optimum share of approximately 0.55,thereby facilitating the development and optimization of operation strategies.This study provides a promising way to increase the share of renewable energy instead of fossil fuels.展开更多
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta...The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).展开更多
基金the National Natural Science Foundation of China(Grant No. 10465003) the Natural Science Foundation of Jiangxi Province(Grant No. 0412011)
文摘A cycle model of an irreversible heat engine working with harmonic systems is established in this paper. Based on the equation of motion of an operator in the Heisenberg picture and semi-group approach, the first law of thermodynamics for a harmonic system and the time evolution of the system are obtained. The general expressions for several important parameters, such as the work, efficiency, power output, and rate of entropy production are derived. By means of numerical analysis, the optimally operating regions and the optimal values of performance parameters of the cycle are determined under the condition of maximum power output. At last, some special cases, such as high temperature limit and frictionless case, are dis-cussed in brief.
文摘By using finite-time thermodynamics, the optimal performance of a Stirling heat engine with thermal resistance, heat leak and regenerative loss is studied. The fundamental optimal relation is derived and the bounds of power output and efficiency are deduced from it. Then the significance of the relation and bounds are revealed. The results obtained here may provide some new theoretical guides for the optimal design of Stirling heat engines.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11974429 and 51576207)the Natural Science Foundation of Naval University of Engineering(Grant No.20161505)。
文摘A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HEXs). Both internal losses and external heat transfer irreversibilities are considered in the model. The heating capacity and the coefficient of performance(COP) of the device are improved through numerical optimization,which is of great significance to the application of the device. The distribution of the total TE element number among four TE devices and the distribution of the total external heat conductance among the four external HEXs are optimized. The results show that both the reservoir temperatures of TTEG and TTEH have significant influences on the performance and the corresponding optimum parameters of the device. The COP can reach 0.14 after optimization when the temperature difference of heat source is 150 K and the temperature difference of heating is 10 K.
基金supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)
文摘This paper has studied the thermodynamic performance of a thermal Brownian heat pump,which consists of Brownian particles moving at a periodic sawtooth potential with external forces and contacting with the alternating hot and cold reservoirs along the space coordinate.The heat flows driven by both potential and kinetic energies are taken into account.The analytical expressions for the heating load,coefficient of performance(COP) and power input of the Brownian heat pump are derived and the performance characteristics are obtained by numerical calculations.It is shown that due to the heat flow via the change of kinetic energy of the particles,the Brownian heat pump is always irreversible and the COP can never attain the Carnot COP.The study has also investigated the influences of the operating parameters,i.e.the external force,barrier height of the potential,asymmetry of the sawtooth potential and temperature ratio of the heat reservoirs,on the performance of the Brownian heat pump.The effective regions of external force and barrier height of the potential in which the Brownian motor can operates as a heat pump are determined.The results show that the performance of the Brownian heat pump greatly depends on the parameters;if the parameters are properly chosen,the Brownian heat pump may be controlled to operate in the optimal regimes.
基金supported by the National Natural Science Foundation of China(Grant No.52171317)。
文摘Based on the non-equilibrium thermodynamics and energy and exergy analyses,a thermodynamic model of two-stage thermoelectric(TE)cooler(TTEC)driven by two-stage TE generator(TTEG)(TTEG-TTEC)combined TE device is established with involving Thomson effect by fitting method of variable physical parameters of TE materials.Taking total number of TE elements as constraint,influences of number distributions of TE elements on three device performance indictors,that is,cooling load,maximum COP and maximum exergetic efficiency,are analyzed.Three number distributions of TE elements are optimized with three maximum performance indictors as the objectives,respectively.Influences of hot-junction temperature of TTEG and coldjunction temperature of TTEC on optimization results are analyzed,and difference between optimization results corresponding to three performance indicators are studied.Optimal performance intervals and optimal variable intervals are provided.Influences of Thomson effect on three general performance indicators,three optimal performance indicators and optimal variables are comparatively discussed.Thomson effect reduces three general performance indicators and three optimal performance indicators of device.When hot-and cold-junction temperatures of TTEG and TTEC are 450,305,325 and 295 K,respectively,Thomson effect reduced maximum cooling load,maximum COP and maximum exergetic efficiency from 9.528 W,9.043×10^(-2)and2.552%to 6.651 W,6.286×10^(-2)and 1.752%,respectively.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.52090061)the Beijing University of Civil Engineering and Architecture Scientific Research Ability Improvement Plan of Young Teachers(Grant No.Z21045)the Guangdong Provincial Key Laboratory of Distributed Energy Systems(Grant No.2020B1212060075)。
文摘Energy systems with multi-energy product outputs driven by renewable energy sources are becoming increasingly popular.To satisfy the diversification of energy use forms in China,this study proposes a new thermochemical energy system driven by solar energy and biomass for natural gas and power production.In this system,syngas from solar-driven biomass gasification is used to synthesize natural gas,whereas the unreacted syngas is burned directly in a combined cycle for power generation.To adjust the production capacity of the system,a shift reaction was used to change the H_(2)/CO ratio in the syngas.The biomass gasification model was experimentally verified,and the thermodynamic performance of the system was studied numerically.The results showed that the production rate of natural gas,with a heat value of 714.88 k J/mol,was approximately 0.306 m^(3)-SNG/kg-bio,and the primary energy efficiency was 47%.The new system showed a good energy-saving potential of 15.29%.Parametric analysis indicated that an increase in the gasification temperature led to a reduction in the natural gas production and an increase in the power output of the system,with a maximum energy efficiency of 66.72%at gasification temperature of 1050°C.With an increase in the syngas share entering the transfer reactor,the natural gas production rate and energy efficiency of the system were improved with an optimum share of approximately 0.55,thereby facilitating the development and optimization of operation strategies.This study provides a promising way to increase the share of renewable energy instead of fossil fuels.
基金Projects(51761032,51471054) supported by the National Natural Science Foundation of China
文摘The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).