In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore t...In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal activation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore railings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the standard of 42.5 cement of China.展开更多
为研究典型生物质热动力学,判断反应机理,获得反应的动力学速率参数,该文采用热重分析技术对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等生物质原料进行了氮气气氛下不同升温速率的热解特性试验研究,利用Friedman法、Flynn...为研究典型生物质热动力学,判断反应机理,获得反应的动力学速率参数,该文采用热重分析技术对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等生物质原料进行了氮气气氛下不同升温速率的热解特性试验研究,利用Friedman法、Flynn-Wall-Ozawa法计算活化能,用Malek法确定最概然机理函数,建立了生物质热分析动力学模型,并讨论了不同生物质的差异性。结果表明:生物质的热解过程均包括3个主要阶段:干燥预热阶段、挥发分析出阶段、碳化阶段。典型生物质活化能随着转化率的增加而增加,在挥发分析出阶段,热解活化能介于144.61~167.34 k J/mol之间;反应动力学机理均符合Avrami-Erofeev函数,但反应级数有一定的差异;指前因子介于26.66~33.97 s-1之间。这为生物质热化学转化过程工艺条件的优化及工程放大提供理论依据。展开更多
基金supported by the National Nature Science Foundation of China (No.50674062)the National Key Technologies R&D Program of China (No.2006BAC21B03)the Post doctoral Science Foundation (No.20070420354)
文摘In the background of little reuse and large stockpile for iron ore tailings, iron ore tailing from Chinese Tonghua were used as raw material to prepare cementitious materials. Cementitious properties of the iron ore tailings activated by compound thermal activation were studied. Testing methods, such as XRD, TG-DTA, and IR were used for researching the phase and structure variety of the iron ore railings in the process of compound thermal activation. The results reveal that a new cementitious material that contains 30wt% of the iron ore tailings can be obtained by compounded thermal activation, whose mortar strength can come up to the standard of 42.5 cement of China.
文摘为研究典型生物质热动力学,判断反应机理,获得反应的动力学速率参数,该文采用热重分析技术对玉米秸秆、小麦秸秆、棉秆、松树木屑、花生壳、甜高粱渣等生物质原料进行了氮气气氛下不同升温速率的热解特性试验研究,利用Friedman法、Flynn-Wall-Ozawa法计算活化能,用Malek法确定最概然机理函数,建立了生物质热分析动力学模型,并讨论了不同生物质的差异性。结果表明:生物质的热解过程均包括3个主要阶段:干燥预热阶段、挥发分析出阶段、碳化阶段。典型生物质活化能随着转化率的增加而增加,在挥发分析出阶段,热解活化能介于144.61~167.34 k J/mol之间;反应动力学机理均符合Avrami-Erofeev函数,但反应级数有一定的差异;指前因子介于26.66~33.97 s-1之间。这为生物质热化学转化过程工艺条件的优化及工程放大提供理论依据。