期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
观念的关系,或先天的形式——论胡塞尔对休谟与康德“先天”概念的反省 被引量:4
1
作者 张任之 《现代哲学》 CSSCI 北大核心 2007年第6期80-88,共9页
一方面,在休谟的主要著作中,先天(apriori)这一概念很少出现,但胡塞尔却认为休谟的"观念的关系"是惟一真正的认识论上重要的先天概念。另一方面,"先天"是康德哲学原则性的主题之一,"先天的形式"可谓康德... 一方面,在休谟的主要著作中,先天(apriori)这一概念很少出现,但胡塞尔却认为休谟的"观念的关系"是惟一真正的认识论上重要的先天概念。另一方面,"先天"是康德哲学原则性的主题之一,"先天的形式"可谓康德对先天的基本理解,但胡塞尔却宣称,康德缺乏真正的先天概念。胡塞尔正是通过对休谟和康德"先天"概念的反省而发现他本人所谓的"本质-先天"概念,并在思想发展史上产生了重大效应。 展开更多
关键词 观念的关系 先天的形式 本质一先天 休谟 康德 胡塞尔
下载PDF
Error Estimations, Error Computations, and Convergence Rates in FEM for BVPs
2
作者 Karan S. Surana A. D. Joy J. N. Reddy 《Applied Mathematics》 2016年第12期1359-1407,共49页
This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential o... This paper presents derivation of a priori error estimates and convergence rates of finite element processes for boundary value problems (BVPs) described by self adjoint, non-self adjoint, and nonlinear differential operators. A posteriori error estimates are discussed in context with local approximations in higher order scalar product spaces. A posteriori error computational framework (without the knowledge of theoretical solution) is presented for all BVPs regardless of the method of approximation employed in constructing the integral form. This enables computations of local errors as well as the global errors in the computed finite element solutions. The two most significant and essential aspects of the research presented in this paper that enable all of the features described above are: 1) ensuring variational consistency of the integral form(s) resulting from the methods of approximation for self adjoint, non-self adjoint, and nonlinear differential operators and 2) choosing local approximations for the elements of a discretization in a subspace of a higher order scalar product space that is minimally conforming, hence ensuring desired global differentiability of the approximations over the discretizations. It is shown that when the theoretical solution of a BVP is analytic, the a priori error estimate (in the asymptotic range, discussed in a later section of the paper) is independent of the method of approximation or the nature of the differential operator provided the resulting integral form is variationally consistent. Thus, the finite element processes utilizing integral forms based on different methods of approximation but resulting in VC integral forms result in the same a priori error estimate and convergence rate. It is shown that a variationally consistent (VC) integral form has best approximation property in some norm, conversely an integral form with best approximation property in some norm is variationally consistent. That is best approximation property of the integral form and the VC of the inte 展开更多
关键词 Finite Element Error Estimation Convergence Rate A priori A Posteriori BVP Variationally Consistent Integral form Variationally Inconsistent Integral form Differential Operator Classification SELF-ADJOINT NON-SELF-ADJOINT Nonlinear
下载PDF
一类蜕化抛物组解最大模的估计
3
作者 叶瑞芬 《南都学坛(南阳师专学报)》 1996年第3期3-11,共9页
该文考虑一类对角型蜕化抛物组,允许主部系数矩阵的特征值正比例于未知解的模的适当正幂次,也正比例于未知解梯度的模的某个正幂次.对右端项有某种特殊结构的情形得到了解最大模的先验估计.
关键词 最大模 先验估计 蜕化抛物组 抛物型方程组
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部