A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The...A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.展开更多
In order to apply classical micromechanics in predicting the effective prop- erties of nanocomposites incorporating interface energy, a concept of equivalent inclusion (EI) is usually adopted. The properties of EI a...In order to apply classical micromechanics in predicting the effective prop- erties of nanocomposites incorporating interface energy, a concept of equivalent inclusion (EI) is usually adopted. The properties of EI are obtained by embedding a single inclusion with the interface into an infinite matrix. However, whether such an EI is universal for different micromechanics-based methods is rarely discussed in the literature. In this pa- per, the interface energy theory is used to study the applicability of the above mentioned EI. It is found that some elastic properties of the EI are related only to the properties of the inclusion and the interface, whereas others are also related to the properties of the matrix. The former properties of the EI can be applied to both the classical Mori-Tanaka method (MTM) and the generalized self-consistent method (GSCM). However, the latter can be applied only to the MTM. Two kinds of new EIs are proposed for the GSCM and used to estimate the effective mechanical properties of nanocomposites.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10772106)
文摘A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.
基金supported by the National Natural Science Foundation of China(Nos.11272007 and 11332001)
文摘In order to apply classical micromechanics in predicting the effective prop- erties of nanocomposites incorporating interface energy, a concept of equivalent inclusion (EI) is usually adopted. The properties of EI are obtained by embedding a single inclusion with the interface into an infinite matrix. However, whether such an EI is universal for different micromechanics-based methods is rarely discussed in the literature. In this pa- per, the interface energy theory is used to study the applicability of the above mentioned EI. It is found that some elastic properties of the EI are related only to the properties of the inclusion and the interface, whereas others are also related to the properties of the matrix. The former properties of the EI can be applied to both the classical Mori-Tanaka method (MTM) and the generalized self-consistent method (GSCM). However, the latter can be applied only to the MTM. Two kinds of new EIs are proposed for the GSCM and used to estimate the effective mechanical properties of nanocomposites.